If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9/4)z+(1/2)=2
We move all terms to the left:
(9/4)z+(1/2)-(2)=0
Domain of the equation: 4)z!=0determiningTheFunctionDomain (9/4)z-2+(1/2)=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
(+9/4)z-2+(+1/2)=0
We multiply parentheses
9z^2-2+(+1/2)=0
We get rid of parentheses
9z^2-2+1/2=0
We multiply all the terms by the denominator
9z^2*2+1-2*2=0
We add all the numbers together, and all the variables
9z^2*2-3=0
Wy multiply elements
18z^2-3=0
a = 18; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·18·(-3)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*18}=\frac{0-6\sqrt{6}}{36} =-\frac{6\sqrt{6}}{36} =-\frac{\sqrt{6}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*18}=\frac{0+6\sqrt{6}}{36} =\frac{6\sqrt{6}}{36} =\frac{\sqrt{6}}{6} $
| y/8=1/4 | | -75=6m-3 | | -75=6m+3 | | 3k+9=-42 | | 81=4p+1 | | 1+3b=-5 | | -42=-6+6n | | 6n+6=-42 | | -42=6+6n | | 13x2+20x-92=0 | | -4(x+7/4)=-15 | | (3x+1)+112=180 | | 48-(3+10y-4(y+2))=-3(5y-4)-(9(y-1)-14y+4) | | 65/60=x/90 | | 0.35+z=5.3 | | 12+y=7y | | 4x-3=2(3x+4) | | x+x*x=78 | | 2x*12=54 | | 234/x=x+5 | | 2.5-a=3.8 | | 30/600=25.16/x | | 264+x+8=8x+6 | | 121+x+26+107+134+x+144+x+8=900 | | p/5=-19 | | b0.69=2.7 | | x-2(x+6)=9(21) | | v=3.14x3^2x1.8 | | 300+5x=400 | | 1/3p=3+4 | | 7x-9-3x=4(x+3)=1 | | 33m9)=6m3m27 |