If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (8xy + 6)(x + y)(x + -1y) = 0 Reorder the terms: (6 + 8xy)(x + y)(x + -1y) = 0 Multiply (6 + 8xy) * (x + y) (6(x + y) + 8xy * (x + y))(x + -1y) = 0 ((x * 6 + y * 6) + 8xy * (x + y))(x + -1y) = 0 ((6x + 6y) + 8xy * (x + y))(x + -1y) = 0 (6x + 6y + (x * 8xy + y * 8xy))(x + -1y) = 0 Reorder the terms: (6x + 6y + (8xy2 + 8x2y))(x + -1y) = 0 (6x + 6y + (8xy2 + 8x2y))(x + -1y) = 0 Reorder the terms: (6x + 8xy2 + 8x2y + 6y)(x + -1y) = 0 (6x + 8xy2 + 8x2y + 6y)(x + -1y) = 0 Multiply (6x + 8xy2 + 8x2y + 6y) * (x + -1y) (6x * (x + -1y) + 8xy2 * (x + -1y) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 ((x * 6x + -1y * 6x) + 8xy2 * (x + -1y) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 Reorder the terms: ((-6xy + 6x2) + 8xy2 * (x + -1y) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 ((-6xy + 6x2) + 8xy2 * (x + -1y) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 (-6xy + 6x2 + (x * 8xy2 + -1y * 8xy2) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 Reorder the terms: (-6xy + 6x2 + (-8xy3 + 8x2y2) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 (-6xy + 6x2 + (-8xy3 + 8x2y2) + 8x2y * (x + -1y) + 6y * (x + -1y)) = 0 (-6xy + 6x2 + -8xy3 + 8x2y2 + (x * 8x2y + -1y * 8x2y) + 6y * (x + -1y)) = 0 Reorder the terms: (-6xy + 6x2 + -8xy3 + 8x2y2 + (-8x2y2 + 8x3y) + 6y * (x + -1y)) = 0 (-6xy + 6x2 + -8xy3 + 8x2y2 + (-8x2y2 + 8x3y) + 6y * (x + -1y)) = 0 (-6xy + 6x2 + -8xy3 + 8x2y2 + -8x2y2 + 8x3y + (x * 6y + -1y * 6y)) = 0 (-6xy + 6x2 + -8xy3 + 8x2y2 + -8x2y2 + 8x3y + (6xy + -6y2)) = 0 Reorder the terms: (-6xy + 6xy + -8xy3 + 6x2 + 8x2y2 + -8x2y2 + 8x3y + -6y2) = 0 Combine like terms: -6xy + 6xy = 0 (0 + -8xy3 + 6x2 + 8x2y2 + -8x2y2 + 8x3y + -6y2) = 0 (-8xy3 + 6x2 + 8x2y2 + -8x2y2 + 8x3y + -6y2) = 0 Combine like terms: 8x2y2 + -8x2y2 = 0 (-8xy3 + 6x2 + 0 + 8x3y + -6y2) = 0 (-8xy3 + 6x2 + 8x3y + -6y2) = 0 Solving -8xy3 + 6x2 + 8x3y + -6y2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2'. 2(-4xy3 + 3x2 + 4x3y + -3y2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-4xy3 + 3x2 + 4x3y + -3y2)' equal to zero and attempt to solve: Simplifying -4xy3 + 3x2 + 4x3y + -3y2 = 0 Solving -4xy3 + 3x2 + 4x3y + -3y2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| x+15+2x=40 | | 5(2x-3)=3+8x-12 | | 3f=-4 | | 6.72x+64=45.1584+8x | | -76-1=-5(6+3) | | -10x-8y=2 | | 0.4(8+x)=3.2+0.7 | | z^4-z^2+1=0 | | 3x+2x^2=-15x | | -2+7x-2x=-2 | | 95=19g | | 6x+2y=-34 | | 9(9-4)=28 | | Q=ln(x)+3ln(y) | | 8x+6x-2=5x-20 | | 3x-11=2x-11 | | =7t(t-4)-2t(8t^2-4t+3) | | -3x+1=-3(x+1) | | 13x+6-7x=9+4x+10 | | 3x+7=2x+2+x | | 5x+6+y-9=82 | | 2f+10= | | 5x+9=3y-6 | | =sqrt(16x^6+8t^3+1) | | 4(x-1)=-3(x-1) | | -2y=5x+10 | | 9x(4+5)=3(7x-5x)+12 | | 6+3x+5+x+8y= | | 3(p+5)+4(p-2)=(p+6) | | 4x=3y+6 | | 8-1-Y=7-4 | | 2x-6+4x=-60 |