If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x-13)=(5x+17)(x+21)
We move all terms to the left:
(8x-13)-((5x+17)(x+21))=0
We get rid of parentheses
8x-((5x+17)(x+21))-13=0
We multiply parentheses ..
-((+5x^2+105x+17x+357))+8x-13=0
We calculate terms in parentheses: -((+5x^2+105x+17x+357)), so:We add all the numbers together, and all the variables
(+5x^2+105x+17x+357)
We get rid of parentheses
5x^2+105x+17x+357
We add all the numbers together, and all the variables
5x^2+122x+357
Back to the equation:
-(5x^2+122x+357)
8x-(5x^2+122x+357)-13=0
We get rid of parentheses
-5x^2+8x-122x-357-13=0
We add all the numbers together, and all the variables
-5x^2-114x-370=0
a = -5; b = -114; c = -370;
Δ = b2-4ac
Δ = -1142-4·(-5)·(-370)
Δ = 5596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5596}=\sqrt{4*1399}=\sqrt{4}*\sqrt{1399}=2\sqrt{1399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-114)-2\sqrt{1399}}{2*-5}=\frac{114-2\sqrt{1399}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-114)+2\sqrt{1399}}{2*-5}=\frac{114+2\sqrt{1399}}{-10} $
| -10b=-b-9 | | 3/8=k×3.75 | | 11c+7=+c-14 | | 5(2x+8)=-15+25 | | 2(3x-1)=5x-16+3x | | 0=3x^2+96 | | 9x–60=18+6x | | 1-11b=-3+b | | -6g=10-5g | | 3x+21=6x–60 | | 6w=2-w-40 | | -6y-8=-50 | | 4n+3n-2+6=53 | | 9x+32=5x+22 | | 5h-2=h+8 | | 7x–3=5x+5 | | 10p=-9+9p | | F(-2)=3x-2x+7 | | -3(1+p)+3=6(p-6) | | f(4)=×2+2 | | x^2+7x+11=4x-8 | | m+12=-32 | | (2x-12)+56=180 | | 1.50=4.00x+5,050 | | 24=7x-3x | | 3x+9=117 | | -48=-16*a | | 8x3=7x-3x | | 10x+46=7x+61 | | -68=g/21 | | 3c-9=12 | | 1/4j=12 |