If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x+63)5x=180
We move all terms to the left:
(8x+63)5x-(180)=0
We multiply parentheses
40x^2+315x-180=0
a = 40; b = 315; c = -180;
Δ = b2-4ac
Δ = 3152-4·40·(-180)
Δ = 128025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128025}=\sqrt{225*569}=\sqrt{225}*\sqrt{569}=15\sqrt{569}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(315)-15\sqrt{569}}{2*40}=\frac{-315-15\sqrt{569}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(315)+15\sqrt{569}}{2*40}=\frac{-315+15\sqrt{569}}{80} $
| 9y=805 | | a+3÷5=-11 | | r^2+1.9r-0.2=0 | | 5/3+1/3x=131/3+7/3x | | x/5-11=-46 | | 805=9y | | x+707=600 | | 4=3x5=6x | | x/2.4=5 | | x/3+9=-21 | | -5x=985 | | e+42=150 | | 92-2x=126 | | 3(7+4x)=30+4(3x-1) | | 3u=6u-84 | | m-18=30 | | 30=m-14 | | 9x-5=10x-15 | | 7s-99=3s+13 | | 25y+15=140 | | 10e-11+8e=10(3e-1)-1 | | 0=y^2-12y-11 | | 1/y=0.0816 | | -x-3.6=-7x-8.6 | | 3=13x-49 | | 4.5+b=-7.5 | | -3x-3.6=-7x-8.6 | | 3(4d-11)=6(2d+18) | | -4-(3x+2)=3(4x-7) | | X+3=14+x-4-7 | | 11.7–2x=x | | p/13=13 |