If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x+35)(11x+23)=120
We move all terms to the left:
(8x+35)(11x+23)-(120)=0
We multiply parentheses ..
(+88x^2+184x+385x+805)-120=0
We get rid of parentheses
88x^2+184x+385x+805-120=0
We add all the numbers together, and all the variables
88x^2+569x+685=0
a = 88; b = 569; c = +685;
Δ = b2-4ac
Δ = 5692-4·88·685
Δ = 82641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{82641}=\sqrt{169*489}=\sqrt{169}*\sqrt{489}=13\sqrt{489}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(569)-13\sqrt{489}}{2*88}=\frac{-569-13\sqrt{489}}{176} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(569)+13\sqrt{489}}{2*88}=\frac{-569+13\sqrt{489}}{176} $
| -2+15p=10p+12p+19 | | (5w+3)(3)= | | 1n(5)=0 | | 69v-86v=-68 | | 9x+78=96 | | -18h=-16h+10 | | 64m-55m-73m+51m=52 | | -19+3q=-4+2q | | -2u-2=-8u+40 | | 12m-20=-19m+19+18m | | 4x+2(x-4)=8(x-1)+2x | | 9n+11=8n | | 2(10-x)=-2(x-10) | | -12z=-11z-20 | | 105=7x+2x+6 | | 2(10-x)=-2x-10 | | 7w+4=-10w+4 | | m-(-48)=57 | | 1/4(28d+8)=d+8 | | 5y-31=101+y | | 3(q-9)+3=6 | | 1.43+17.3y−7.9y=–17.1y+1.43 | | 4y+20=2(2y+10) | | 9(8d-5)+13=12d+-2 | | 3e+30=7(e+) | | x3=3x-3 | | 0=4x^2-24x-13 | | 2(j-3)=8 | | x+14=-3x-18 | | 6.09^2+4.57x-8.86=0 | | 3x+9=-x-19 | | 4x+5=2x−13 |