(8x+3)(2x-4)=(16x-36)

Simple and best practice solution for (8x+3)(2x-4)=(16x-36) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x+3)(2x-4)=(16x-36) equation:



(8x+3)(2x-4)=(16x-36)
We move all terms to the left:
(8x+3)(2x-4)-((16x-36))=0
We multiply parentheses ..
(+16x^2-32x+6x-12)-((16x-36))=0
We calculate terms in parentheses: -((16x-36)), so:
(16x-36)
We get rid of parentheses
16x-36
Back to the equation:
-(16x-36)
We get rid of parentheses
16x^2-32x+6x-16x-12+36=0
We add all the numbers together, and all the variables
16x^2-42x+24=0
a = 16; b = -42; c = +24;
Δ = b2-4ac
Δ = -422-4·16·24
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{57}}{2*16}=\frac{42-2\sqrt{57}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{57}}{2*16}=\frac{42+2\sqrt{57}}{32} $

See similar equations:

| 9x^2-78x-27=0 | | 2(x+3)+3(x-4)=9 | | (8x+3)(2x-4)=(4x-6)*2 | | 9x^2-79x-26=0 | | 7x+5=3+13 | | 4^(y-1)=8 | | 3x+2×72=4 | | 4^y-1=8 | | 3x²+5x+2=0 | | 5x-72=8 | | -2(x-(1/5))=-3x | | 6b+5(b=7) | | 0.7z=-14 | | 7-(2z-8)=8-3z | | 9x-35=3x-5 | | 3x+72=4 | | (x+1)²=-1 | | 1/2(10x-4)=5x-2 | | 8x-4=4(2x+3) | | -3(n-2)=-4n | | 3x-0.6=x+4.4 | | 5y+5=6y-2y | | x^2+16x-60=-20 | | 3(y-1)=2(y+2) | | 50+6x=x^2 | | (3x+4)^4=0 | | m+37=307 | | (2x-29)=(x+23) | | 0.22(x+5)=0.2x+2.4 | | 2x+5=5x+19 | | 4p-7=3p+2 | | (6.3/7.3)*v+v=1 |

Equations solver categories