If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x+12)(10x+6)=180
We move all terms to the left:
(8x+12)(10x+6)-(180)=0
We multiply parentheses ..
(+80x^2+48x+120x+72)-180=0
We get rid of parentheses
80x^2+48x+120x+72-180=0
We add all the numbers together, and all the variables
80x^2+168x-108=0
a = 80; b = 168; c = -108;
Δ = b2-4ac
Δ = 1682-4·80·(-108)
Δ = 62784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{62784}=\sqrt{576*109}=\sqrt{576}*\sqrt{109}=24\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-24\sqrt{109}}{2*80}=\frac{-168-24\sqrt{109}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+24\sqrt{109}}{2*80}=\frac{-168+24\sqrt{109}}{160} $
| -4x=-24x+10 | | 7(x-5)=-9+7x | | S=2b+L | | (7x-26)+(5x-27)=10x-23 | | 8x-23+(8x-23)+34=180 | | 0=15x-2.5x^2 | | -2+4(1+8r)=8(3r+8)+2 | | (6d+7)+133=180 | | 1x+9=100 | | 7x+135=180 | | 7x+135=360 | | 3x+142=360 | | 3x+7x=135 | | 2x-3=-1/2x+2 | | 50+3x=-5-2x | | Y=48+10x | | (8x+12)=(10x+6) | | 10x+8=52.x | | 1/33x=729 | | x^2-119.34x+28.72=0 | | x+12=6x-8=180 | | 28p-16p-9=843 | | 4x^2+7x-15=-10 | | 3x-9x=2(1-3x)-1 | | 5(3-x)+7x=3x+15+2x | | (4w-8)=90 | | 16-4t=5t | | 2(x+4)+x+10=180 | | 17x+12=47 | | x=1235 | | 4x-x=1235 | | 4x=1235 |