If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(82+90+83+85+x(2))/5=83
We move all terms to the left:
(82+90+83+85+x(2))/5-(83)=0
We add all the numbers together, and all the variables
(+x^2+82+90+83+85)/5-83=0
We multiply all the terms by the denominator
(+x^2+82+90+83+85)-83*5=0
We add all the numbers together, and all the variables
(+x^2+82+90+83+85)-415=0
We get rid of parentheses
x^2+82+90+83+85-415=0
We add all the numbers together, and all the variables
x^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $
| 3x^2–75=0 | | -10=-c/5 | | g/8-(9.2)=-1 | | 9(x−4)=−18 | | 3c+18+-11c=-6 | | 11/5=8/v | | 3x-(5)=-6 | | 3(3−2q)+2(q−1)=10 | | (4x-7)-(-2x+6)=8 | | 2(3y-4)=24 | | 0.5x=x+2.5 | | 12p=$3.33 | | F(12)=-5/2x+7/2 | | -5x-20=-12 | | 12p=$3.3/ | | k^2=-49 | | (340+x)/5=86 | | 89=89= 8c+258c+25 | | 12x+12=2x+84 | | 8n+5n+2=17 | | -1.75+0.7m=-7.21-3.2m | | 7.7=r/2=4.7 | | 3x-2.5=5x-8.5 | | 7.7=r/2=$.7 | | 2=-0.6x-10 | | -9=b | | 8(7-8n)=120 | | 90=43(x+3) | | -4(x+60=-40 | | 2.4h−9.1=5.1h+8.21+6.99 | | 5(x+3)=2x-5 | | 3.5w+9.83=1.1w−6.49 |