(8-3z)-(5z-3)+(5-2z)=(6z-4)(4z+2)

Simple and best practice solution for (8-3z)-(5z-3)+(5-2z)=(6z-4)(4z+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8-3z)-(5z-3)+(5-2z)=(6z-4)(4z+2) equation:



(8-3z)-(5z-3)+(5-2z)=(6z-4)(4z+2)
We move all terms to the left:
(8-3z)-(5z-3)+(5-2z)-((6z-4)(4z+2))=0
We add all the numbers together, and all the variables
(-3z+8)-(5z-3)+(-2z+5)-((6z-4)(4z+2))=0
We get rid of parentheses
-3z-5z-2z-((6z-4)(4z+2))+8+3+5=0
We multiply parentheses ..
-((+24z^2+12z-16z-8))-3z-5z-2z+8+3+5=0
We calculate terms in parentheses: -((+24z^2+12z-16z-8)), so:
(+24z^2+12z-16z-8)
We get rid of parentheses
24z^2+12z-16z-8
We add all the numbers together, and all the variables
24z^2-4z-8
Back to the equation:
-(24z^2-4z-8)
We add all the numbers together, and all the variables
-10z-(24z^2-4z-8)+16=0
We get rid of parentheses
-24z^2-10z+4z+8+16=0
We add all the numbers together, and all the variables
-24z^2-6z+24=0
a = -24; b = -6; c = +24;
Δ = b2-4ac
Δ = -62-4·(-24)·24
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{65}}{2*-24}=\frac{6-6\sqrt{65}}{-48} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{65}}{2*-24}=\frac{6+6\sqrt{65}}{-48} $

See similar equations:

| 3x+48=57 | | 6(x+2)=7x-22+2x | | 0.5x+3=3x-1+2x+1+x | | 7x−84=−70 | | 0.5x+3=3x-1+2+1+x | | 3(x/3-3)-8=4x+2 | | x^2+10x+425=0 | | -(-9-x/4)=9 | | -4(-6r-3)=12 | | -15=-(2x+3) | | 9x^2+42x+50=0 | | 4p-14=9p+4 | | 4p=14=9p+4 | | 3x+2=(2x+13)/33x+2 | | 4x8x=72 | | 5x-26=1 | | 3(x+3)=7(x−2) | | (2x+18)+124=180 | | 60t–5t^2=0 | | 60t–5t2=0 | | 5/(1+3x)=0.5-1.5x | | 7(x-7)+124=180 | | 54x=7x | | 12x-16=10x | | 8x-20=5x+22 | | M/2+m/5=21) | | 2x+5=1+3(2+2x) | | 2x+5=1+3(2+2x | | 9x+8=80-9x-18 | | a÷5=7÷15 | | 5(3x+4)—8(6x—7)=9x—8 | | -4x+6=28-2x |

Equations solver categories