(8+2x)(3+2x)=120

Simple and best practice solution for (8+2x)(3+2x)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8+2x)(3+2x)=120 equation:



(8+2x)(3+2x)=120
We move all terms to the left:
(8+2x)(3+2x)-(120)=0
We add all the numbers together, and all the variables
(2x+8)(2x+3)-120=0
We multiply parentheses ..
(+4x^2+6x+16x+24)-120=0
We get rid of parentheses
4x^2+6x+16x+24-120=0
We add all the numbers together, and all the variables
4x^2+22x-96=0
a = 4; b = 22; c = -96;
Δ = b2-4ac
Δ = 222-4·4·(-96)
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{505}}{2*4}=\frac{-22-2\sqrt{505}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{505}}{2*4}=\frac{-22+2\sqrt{505}}{8} $

See similar equations:

| -6x-18=10-2x | | -x+3=3+x | | -x+3=3x+x | | 5+8x=10x | | 13x-4=-3x-20 | | -17=r/19 | | 45x+81​=9 | | 2x-1=-25-6x | | 5a+9=-21+10a | | (1+2x)=53 | | 5x-7=-0,8+3,4 | | 16x-16=16-16x | | 9m+19=6m+10 | | 7(1+4n)=7(6=3n) | | 2x+10=188 | | 1+m=10-2m | | 0,4x-12,03=0,13 | | 5x+1/2=125x+1/2=12 | | -3(5m-2)=36 | | a/5+3=-7 | | -8-11x=12-6x | | -5(-2-2m)=2m-20+8m-20 | | 3y-y+11=8=9 | | -0.5g=-3g+0.25 | | 1-5x=-9+9 | | -18+9.68u=-1 | | 3.4+.c=8.1 | | (4x−15)+(4x+3)=180 | | 8m+11=2+7m | | 8=r/8+2 | | -1/5w-2/5=3w-7/3 | | 15a-(9a-12)=123 |

Equations solver categories