If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8)/(3)k+(3)/(5)=-6-(9)/(7)k
We move all terms to the left:
(8)/(3)k+(3)/(5)-(-6-(9)/(7)k)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
8/3k-(-9/7k-6)+3/5=0
We get rid of parentheses
8/3k+9/7k+6+3/5=0
We calculate fractions
441k^2/525k^2+1400k/525k^2+675k/525k^2+6=0
We multiply all the terms by the denominator
441k^2+1400k+675k+6*525k^2=0
We add all the numbers together, and all the variables
441k^2+2075k+6*525k^2=0
Wy multiply elements
441k^2+3150k^2+2075k=0
We add all the numbers together, and all the variables
3591k^2+2075k=0
a = 3591; b = 2075; c = 0;
Δ = b2-4ac
Δ = 20752-4·3591·0
Δ = 4305625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4305625}=2075$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2075)-2075}{2*3591}=\frac{-4150}{7182} =-2075/3591 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2075)+2075}{2*3591}=\frac{0}{7182} =0 $
| 23x=506 | | 8/3k+3/5=-6-9/7k | | 3(5x4)=25.5 | | x(x-2)^2=0 | | 6m^2+11m-52=0 | | (2x+4)*4=4*(x+4) | | 2|y-7|+11=37 | | 2/3x-1/6=5/12x+3/2-1/6x | | (2x+4)=(x+4) | | (2x+10)*4=10*(x+3) | | Y=1.4x+94 | | 2(4w+3)/5=-9 | | 3(3c-1)-2=7c+4 | | (4w+4-2w+11)+(2w+11)=180 | | (4w+4)-(2w+11)+(2w+11)=180 | | 32+2y-9=13y-13-5y | | (6+x)^2=49 | | x+.091790x=60 | | 70x=300 | | 2x=(320÷8) | | 11w+(5w+4)=180 | | 8=+5(2x+7)= | | (4y+6)+(20y-11)+(7y-7)=360 | | 2x=653.666 | | 12w^2+30w-160=0 | | Ax3+A=84 | | x=41-14 | | 7 x − 40 = 30 − 3 x | | x=1+14 | | (2x-10)(3x-4)=0 | | 150-5x=0 | | 3/7a=-45 |