(7x2-4x-7)=(2x+8)

Simple and best practice solution for (7x2-4x-7)=(2x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x2-4x-7)=(2x+8) equation:



(7x^2-4x-7)=(2x+8)
We move all terms to the left:
(7x^2-4x-7)-((2x+8))=0
We get rid of parentheses
7x^2-4x-((2x+8))-7=0
We calculate terms in parentheses: -((2x+8)), so:
(2x+8)
We get rid of parentheses
2x+8
Back to the equation:
-(2x+8)
We get rid of parentheses
7x^2-4x-2x-8-7=0
We add all the numbers together, and all the variables
7x^2-6x-15=0
a = 7; b = -6; c = -15;
Δ = b2-4ac
Δ = -62-4·7·(-15)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{114}}{2*7}=\frac{6-2\sqrt{114}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{114}}{2*7}=\frac{6+2\sqrt{114}}{14} $

See similar equations:

| 14p=16 | | 3=6-7p | | 85-y=239 | | T=4s+20.93 | | 4​(x-5)=3(x+5) | | -0.9-x=0.075 | | 5-n/2=6 | | 108=2x•x | | 173=-7x+-66x | | 108=2x^2 | | 170+50b=910 | | 1/11y-6=-19 | | 16x2=10x | | 6-v/8=7 | | -12=-t | | 3(4x-12)=94 | | x/8-10=4 | | 6x+8x-19=57-5x | | 17/p+6p-7/p+2=6 | | 0.02x+0.048(80,000-x)=0.035(80,000) | | 3/5w=1/15-2/3w | | 6(Z-2=3z-15 | | 36x2–60x=−25 | | -12+2v=-2(2+2) | | 4=4k/4 | | v/5-3=-28 | | 4+2w=16 | | -7x=-12x+65 | | 2.66666666666x=40 | | 4(3y-1=5y-11 | | 11x+89=1 | | 132-4v=62 |

Equations solver categories