(7x-4/5x+2)-2=10

Simple and best practice solution for (7x-4/5x+2)-2=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-4/5x+2)-2=10 equation:



(7x-4/5x+2)-2=10
We move all terms to the left:
(7x-4/5x+2)-2-(10)=0
Domain of the equation: 5x+2)!=0
x∈R
We add all the numbers together, and all the variables
(7x-4/5x+2)-12=0
We get rid of parentheses
7x-4/5x+2-12=0
We multiply all the terms by the denominator
7x*5x+2*5x-12*5x-4=0
Wy multiply elements
35x^2+10x-60x-4=0
We add all the numbers together, and all the variables
35x^2-50x-4=0
a = 35; b = -50; c = -4;
Δ = b2-4ac
Δ = -502-4·35·(-4)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-6\sqrt{85}}{2*35}=\frac{50-6\sqrt{85}}{70} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+6\sqrt{85}}{2*35}=\frac{50+6\sqrt{85}}{70} $

See similar equations:

| x/2-1=2x/3+3/2 | | -2(4n-8)=26 | | 5a2-26a=24 | | 0=-0.23x^2+1.87x+1.5 | | x=0.2222222222222 | | 5(2x+5)=4x+7 | | p-4/3+9/4p=23/12 | | 3.3x-26.4-x=-10 | | 9x-3(x-8)=2x+12 | | 6x+5-4x=19 | | 3x-5-1=-24 | | p-43+94p=2312 | | 2^(2x-3)=18 | | H=-0.5d^2+2d+6 | | 0.4x=-0.1 | | 5x+3=2x+18= | | m3=18 | | 2(-5x+45)-x+9=0 | | (X+54)5x+90=180 | | 8y+5=5y+9 | | (a/10)+(a+10)+a=180 | | 2/3x+1/3=-5/6-1/2x | | 3(k-3)+9k=-3 | | 3x-6=15/2 | | 1-3(2x+6)=58 | | 2n+8=2+12 | | 3x-8=2x+2= | | 31a-2=41+45 | | 2a+(a/10)=180 | | 4(6-k)=20 | | 65x-50=45x+90 | | 3+4x/5+4-x/3=1/15 |

Equations solver categories