(7x-25)(4x+5)=180

Simple and best practice solution for (7x-25)(4x+5)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x-25)(4x+5)=180 equation:


Simplifying
(7x + -25)(4x + 5) = 180

Reorder the terms:
(-25 + 7x)(4x + 5) = 180

Reorder the terms:
(-25 + 7x)(5 + 4x) = 180

Multiply (-25 + 7x) * (5 + 4x)
(-25(5 + 4x) + 7x * (5 + 4x)) = 180
((5 * -25 + 4x * -25) + 7x * (5 + 4x)) = 180
((-125 + -100x) + 7x * (5 + 4x)) = 180
(-125 + -100x + (5 * 7x + 4x * 7x)) = 180
(-125 + -100x + (35x + 28x2)) = 180

Combine like terms: -100x + 35x = -65x
(-125 + -65x + 28x2) = 180

Solving
-125 + -65x + 28x2 = 180

Solving for variable 'x'.

Reorder the terms:
-125 + -180 + -65x + 28x2 = 180 + -180

Combine like terms: -125 + -180 = -305
-305 + -65x + 28x2 = 180 + -180

Combine like terms: 180 + -180 = 0
-305 + -65x + 28x2 = 0

Begin completing the square.  Divide all terms by
28 the coefficient of the squared term: 

Divide each side by '28'.
-10.89285714 + -2.321428571x + x2 = 0

Move the constant term to the right:

Add '10.89285714' to each side of the equation.
-10.89285714 + -2.321428571x + 10.89285714 + x2 = 0 + 10.89285714

Reorder the terms:
-10.89285714 + 10.89285714 + -2.321428571x + x2 = 0 + 10.89285714

Combine like terms: -10.89285714 + 10.89285714 = 0.00000000
0.00000000 + -2.321428571x + x2 = 0 + 10.89285714
-2.321428571x + x2 = 0 + 10.89285714

Combine like terms: 0 + 10.89285714 = 10.89285714
-2.321428571x + x2 = 10.89285714

The x term is -2.321428571x.  Take half its coefficient (-1.160714286).
Square it (1.347257654) and add it to both sides.

Add '1.347257654' to each side of the equation.
-2.321428571x + 1.347257654 + x2 = 10.89285714 + 1.347257654

Reorder the terms:
1.347257654 + -2.321428571x + x2 = 10.89285714 + 1.347257654

Combine like terms: 10.89285714 + 1.347257654 = 12.240114794
1.347257654 + -2.321428571x + x2 = 12.240114794

Factor a perfect square on the left side:
(x + -1.160714286)(x + -1.160714286) = 12.240114794

Calculate the square root of the right side: 3.498587543

Break this problem into two subproblems by setting 
(x + -1.160714286) equal to 3.498587543 and -3.498587543.

Subproblem 1

x + -1.160714286 = 3.498587543 Simplifying x + -1.160714286 = 3.498587543 Reorder the terms: -1.160714286 + x = 3.498587543 Solving -1.160714286 + x = 3.498587543 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.160714286' to each side of the equation. -1.160714286 + 1.160714286 + x = 3.498587543 + 1.160714286 Combine like terms: -1.160714286 + 1.160714286 = 0.000000000 0.000000000 + x = 3.498587543 + 1.160714286 x = 3.498587543 + 1.160714286 Combine like terms: 3.498587543 + 1.160714286 = 4.659301829 x = 4.659301829 Simplifying x = 4.659301829

Subproblem 2

x + -1.160714286 = -3.498587543 Simplifying x + -1.160714286 = -3.498587543 Reorder the terms: -1.160714286 + x = -3.498587543 Solving -1.160714286 + x = -3.498587543 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.160714286' to each side of the equation. -1.160714286 + 1.160714286 + x = -3.498587543 + 1.160714286 Combine like terms: -1.160714286 + 1.160714286 = 0.000000000 0.000000000 + x = -3.498587543 + 1.160714286 x = -3.498587543 + 1.160714286 Combine like terms: -3.498587543 + 1.160714286 = -2.337873257 x = -2.337873257 Simplifying x = -2.337873257

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.659301829, -2.337873257}

See similar equations:

| p=85-2.5c | | 21(c+4)-6x=2x+84 | | y=-6x^2+48x-40 | | 4x+20=16-90 | | 7x-25+4x+5=180 | | -2(-5x-3)=-6 | | 3(80/7)-y=42 | | 20=7-(r+5) | | -3y-10+4y= | | 5p+4-3p+8=24 | | 3(5x+10)=120 | | -10x-5x=64 | | 10x+6+20x-3+51=180 | | (3x)(x-2)=(x+4)(x-1) | | 225-h^2=0 | | -3rt(-2t^2+3r)=0 | | 7(-7x+6)=91 | | 1040=5x+640 | | f(1)=3x-10 | | 13=d^6 | | 3x+ln(2x)=9 | | 35-11=4(x-6) | | 5jk(3jk+2k)=0 | | x*ln(y)+y^4=ln(x) | | 36+6x=84 | | 8x+2+5x=180 | | 999999+1= | | 3(3x+4)+6(x-8)=32 | | 8x+2+5x+80=180 | | (2x+26)=(3x-36) | | 2x+69=180 | | 3+g=10 |

Equations solver categories