(7x+4)+(5x+4)+(4x+9)+(4x+1)(9x-6)=360

Simple and best practice solution for (7x+4)+(5x+4)+(4x+9)+(4x+1)(9x-6)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x+4)+(5x+4)+(4x+9)+(4x+1)(9x-6)=360 equation:



(7x+4)+(5x+4)+(4x+9)+(4x+1)(9x-6)=360
We move all terms to the left:
(7x+4)+(5x+4)+(4x+9)+(4x+1)(9x-6)-(360)=0
We get rid of parentheses
7x+5x+4x+(4x+1)(9x-6)+4+4+9-360=0
We multiply parentheses ..
(+36x^2-24x+9x-6)+7x+5x+4x+4+4+9-360=0
We add all the numbers together, and all the variables
(+36x^2-24x+9x-6)+16x-343=0
We get rid of parentheses
36x^2-24x+9x+16x-6-343=0
We add all the numbers together, and all the variables
36x^2+x-349=0
a = 36; b = 1; c = -349;
Δ = b2-4ac
Δ = 12-4·36·(-349)
Δ = 50257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{50257}}{2*36}=\frac{-1-\sqrt{50257}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{50257}}{2*36}=\frac{-1+\sqrt{50257}}{72} $

See similar equations:

| r-4r=4.5 | | 4x(7)=13 | | (3x+2)+2x=47 | | 0=x^2+130+21x | | 60*x=5x*6x | | 3x+0.4(10x-6)=21 | | (d+25)+34=89 | | 3/4(x-2)=1 | | 6x+18=582 | | Y=n+70/5 | | 12x+x-4=162 | | 5t+7t+23=119 | | y/26=107 | | 252/x=7 | | 348+y=806 | | (3x-4)+(9x+17)=180 | | 8x+19=14x-6 | | 4x^2+30x-1350=0 | | 9t+t=7000 | | 2^7-3x=14 | | 3x^2-60x+150=0 | | y=7.6-1.2(2) | | y/5+14=20 | | 10(r+1)=20 | | Y=10x+7/13 | | -14-2x=76 | | -6(k-3)=-27-3k | | 2r+7=7 | | 8x-36=40-5x | | 3(u+5)=15 | | y^2=8y+4 | | 8x-18=40-5x |

Equations solver categories