(7t-2)(3t+1)=3(13t)

Simple and best practice solution for (7t-2)(3t+1)=3(13t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7t-2)(3t+1)=3(13t) equation:



(7t-2)(3t+1)=3(13t)
We move all terms to the left:
(7t-2)(3t+1)-(3(13t))=0
determiningTheFunctionDomain (7t-2)(3t+1)-313t=0
We add all the numbers together, and all the variables
-313t+(7t-2)(3t+1)=0
We multiply parentheses ..
(+21t^2+7t-6t-2)-313t=0
We get rid of parentheses
21t^2+7t-6t-313t-2=0
We add all the numbers together, and all the variables
21t^2-312t-2=0
a = 21; b = -312; c = -2;
Δ = b2-4ac
Δ = -3122-4·21·(-2)
Δ = 97512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{97512}=\sqrt{4*24378}=\sqrt{4}*\sqrt{24378}=2\sqrt{24378}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-312)-2\sqrt{24378}}{2*21}=\frac{312-2\sqrt{24378}}{42} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-312)+2\sqrt{24378}}{2*21}=\frac{312+2\sqrt{24378}}{42} $

See similar equations:

| 6y-4+y=8 | | 9/2=n/4 | | x*4/3x=300 | | (Y-2)^2+14=8y-3y | | 6y-4y=y=18 | | 210t+5=41790 | | 7x+35=65 | | 10-2x/3=4 | | 4/5m-1=2/2m-1 | | 23-3y=7+y | | 7x-14=4-2x | | 4m-5(3m-10)=126 | | 4(p-3))=20 | | -11x-19=9-7x | | -3+4m=9-4m | | 22x+5=83 | | 5/12h+1/8=1/2 | | 142(3p+1)=6(4+p) | | 4/18=14/x | | 7/16h+1/5=1/3 | | -2(x+4640=-22 | | 0=20x^2+6x-8 | | 9-4p=33 | | 9n+17=3n+8 | | 2n-5=8n=7 | | 4x+8=-88 | | 2/3=50/n | | 3x+5-x+15=180 | | X*x*x+2x-1=0 | | -7x+6=24 | | 3y-5+2y=180 | | F(x)=(x^2+2x+5)/3x |

Equations solver categories