(7p+6)(2p-5)=-2p(p+9)-19

Simple and best practice solution for (7p+6)(2p-5)=-2p(p+9)-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7p+6)(2p-5)=-2p(p+9)-19 equation:



(7p+6)(2p-5)=-2p(p+9)-19
We move all terms to the left:
(7p+6)(2p-5)-(-2p(p+9)-19)=0
We multiply parentheses ..
(+14p^2-35p+12p-30)-(-2p(p+9)-19)=0
We calculate terms in parentheses: -(-2p(p+9)-19), so:
-2p(p+9)-19
We multiply parentheses
-2p^2-18p-19
Back to the equation:
-(-2p^2-18p-19)
We get rid of parentheses
14p^2+2p^2-35p+12p+18p-30+19=0
We add all the numbers together, and all the variables
16p^2-5p-11=0
a = 16; b = -5; c = -11;
Δ = b2-4ac
Δ = -52-4·16·(-11)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-27}{2*16}=\frac{-22}{32} =-11/16 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+27}{2*16}=\frac{32}{32} =1 $

See similar equations:

| 3(x—1)=2x+9 | | 8x-27=6 | | 3(x–1)=2x+9 | | g-6=-4 | | 90=t+2.5t^2 | | 9x-x+1=6(x-1)+7 | | 3^2=10y+8 | | -2x+13=1 | | 7y-60=32+3y | | 4(×-4)-29=4x+2 | | 182=13t+t^2 | | -4=6–g | | 2+9w=-7 | | 20-2x=10+2x | | x3-2=6 | | 52=-16t^2+60t+16 | | 0=-16t^2+60t+16 | | 3(r-5)+5=40 | | 6-8(x+2)=30 | | 6n^2+3n-8=0 | | 8(x+2)+6=62 | | 22-x/32=-25 | | 48=6(-x-3) | | 0=-16^2+60t+16 | | x*x^2+2x-35=0 | | 100^x=100,000 | | 9x-5x-4x=-5 | | 1/3w=3 | | 10x+24=90 | | 2x2+11x–51=0, | | 9+x=3+5x | | X^2-10x^2+21=0 |

Equations solver categories