If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (7n + -2) + -1(-3n + 1) = -3n(1 + -3n) Reorder the terms: (-2 + 7n) + -1(-3n + 1) = -3n(1 + -3n) Remove parenthesis around (-2 + 7n) -2 + 7n + -1(-3n + 1) = -3n(1 + -3n) Reorder the terms: -2 + 7n + -1(1 + -3n) = -3n(1 + -3n) -2 + 7n + (1 * -1 + -3n * -1) = -3n(1 + -3n) -2 + 7n + (-1 + 3n) = -3n(1 + -3n) Reorder the terms: -2 + -1 + 7n + 3n = -3n(1 + -3n) Combine like terms: -2 + -1 = -3 -3 + 7n + 3n = -3n(1 + -3n) Combine like terms: 7n + 3n = 10n -3 + 10n = -3n(1 + -3n) -3 + 10n = (1 * -3n + -3n * -3n) -3 + 10n = (-3n + 9n2) Solving -3 + 10n = -3n + 9n2 Solving for variable 'n'. Combine like terms: 10n + 3n = 13n -3 + 13n + -9n2 = -3n + 9n2 + 3n + -9n2 Reorder the terms: -3 + 13n + -9n2 = -3n + 3n + 9n2 + -9n2 Combine like terms: -3n + 3n = 0 -3 + 13n + -9n2 = 0 + 9n2 + -9n2 -3 + 13n + -9n2 = 9n2 + -9n2 Combine like terms: 9n2 + -9n2 = 0 -3 + 13n + -9n2 = 0 Begin completing the square. Divide all terms by -9 the coefficient of the squared term: Divide each side by '-9'. 0.3333333333 + -1.444444444n + n2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + -1.444444444n + -0.3333333333 + n2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + -1.444444444n + n2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + -1.444444444n + n2 = 0 + -0.3333333333 -1.444444444n + n2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 -1.444444444n + n2 = -0.3333333333 The n term is -1.444444444n. Take half its coefficient (-0.722222222). Square it (0.5216049380) and add it to both sides. Add '0.5216049380' to each side of the equation. -1.444444444n + 0.5216049380 + n2 = -0.3333333333 + 0.5216049380 Reorder the terms: 0.5216049380 + -1.444444444n + n2 = -0.3333333333 + 0.5216049380 Combine like terms: -0.3333333333 + 0.5216049380 = 0.1882716047 0.5216049380 + -1.444444444n + n2 = 0.1882716047 Factor a perfect square on the left side: (n + -0.722222222)(n + -0.722222222) = 0.1882716047 Calculate the square root of the right side: 0.433902759 Break this problem into two subproblems by setting (n + -0.722222222) equal to 0.433902759 and -0.433902759.Subproblem 1
n + -0.722222222 = 0.433902759 Simplifying n + -0.722222222 = 0.433902759 Reorder the terms: -0.722222222 + n = 0.433902759 Solving -0.722222222 + n = 0.433902759 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '0.722222222' to each side of the equation. -0.722222222 + 0.722222222 + n = 0.433902759 + 0.722222222 Combine like terms: -0.722222222 + 0.722222222 = 0.000000000 0.000000000 + n = 0.433902759 + 0.722222222 n = 0.433902759 + 0.722222222 Combine like terms: 0.433902759 + 0.722222222 = 1.156124981 n = 1.156124981 Simplifying n = 1.156124981Subproblem 2
n + -0.722222222 = -0.433902759 Simplifying n + -0.722222222 = -0.433902759 Reorder the terms: -0.722222222 + n = -0.433902759 Solving -0.722222222 + n = -0.433902759 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '0.722222222' to each side of the equation. -0.722222222 + 0.722222222 + n = -0.433902759 + 0.722222222 Combine like terms: -0.722222222 + 0.722222222 = 0.000000000 0.000000000 + n = -0.433902759 + 0.722222222 n = -0.433902759 + 0.722222222 Combine like terms: -0.433902759 + 0.722222222 = 0.288319463 n = 0.288319463 Simplifying n = 0.288319463Solution
The solution to the problem is based on the solutions from the subproblems. n = {1.156124981, 0.288319463}
| p=qr^2 | | -8x1/4(6) | | 4x-7=10+6 | | 9x(x-15)(x-15)=0 | | 3b/11=18 | | 7+s/14=-3+s/7 | | 29/5887 | | 7-4x=17x-6x+19 | | p=q*r*r | | 5887/29 | | -3(2+-7)+-10h= | | 75/3 | | 3x+5(4x-16)=58 | | 3(x-5)(6-2x)=0 | | 3m-5m+-6=-20 | | 11/6x+3/2x=10/3 | | 10+9(3z+4)= | | 2/3x+1/4x-2=x-1/6+2 | | 5a-7=2a-3 | | 30-4x=x+9 | | 2x+5(x-12)=-18 | | 4t+3(8t+2)= | | ln*(3x^2-10x+8)-ln*(x^2-5x+6)=ln*2x | | (x-6)^2/5=4 | | (6x+12)=(2x) | | 3x+2+5x=14 | | 77-5x=13x+17 | | 4-3[4-(2y-5)]= | | 500/1.35= | | 8(4p+1)=32p+3 | | -4.8k-(-3-6k)=3.8 | | -q+7=2q/3-3 |