If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/4x+10)+(2x+15)+(5/4x+20)+(3/4x+5)=180
We move all terms to the left:
(7/4x+10)+(2x+15)+(5/4x+20)+(3/4x+5)-(180)=0
Domain of the equation: 4x+10)!=0
x∈R
Domain of the equation: 4x+20)!=0
x∈R
Domain of the equation: 4x+5)!=0We get rid of parentheses
x∈R
7/4x+2x+5/4x+3/4x+10+15+20+5-180=0
We multiply all the terms by the denominator
2x*4x+10*4x+15*4x+20*4x+5*4x-180*4x+7+5+3=0
We add all the numbers together, and all the variables
2x*4x+10*4x+15*4x+20*4x+5*4x-180*4x+15=0
Wy multiply elements
8x^2+40x+60x+80x+20x-720x+15=0
We add all the numbers together, and all the variables
8x^2-520x+15=0
a = 8; b = -520; c = +15;
Δ = b2-4ac
Δ = -5202-4·8·15
Δ = 269920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{269920}=\sqrt{16*16870}=\sqrt{16}*\sqrt{16870}=4\sqrt{16870}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-520)-4\sqrt{16870}}{2*8}=\frac{520-4\sqrt{16870}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-520)+4\sqrt{16870}}{2*8}=\frac{520+4\sqrt{16870}}{16} $
| 18+5k=4(3k-9) | | 1/(x-11)=x/(x^2-121) | | x+(3x+21)=180 | | -14-19k=-18.2k | | 4x^2=25x-21 | | -8g=9−7g | | -1−5b-2−5=-2 | | 38=18+b+17 | | 6321=49(p+40) | | -3(x=2)=6 | | 2(x-5)+(-1+5)=2x-7 | | 180=7y-20+5y-38+90 | | 4x+5=6x-65 | | 95=e+36 | | x/3-2/5=1/4 | | v+23000=-800 | | 42x-9=3(1.2x+4) | | 3x(20-5=) | | 143=n-27 | | 6.17+w=12 | | 90/x=2.5 | | 280=39-x | | 6x-36+4=8x-10 | | 2/3m+3=4/5m-5 | | -2(8v-5)=-23+7v | | x/(x-6)-3=6/x-6 | | 3(x-3)-4=-1 | | 5x−12=2x+2 | | 3x+63=-32 | | A=8x−10B=3x+90 | | 1/v=2/6 | | 4x-9=-48 |