(7/2x+4)+(8x-8)=180

Simple and best practice solution for (7/2x+4)+(8x-8)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/2x+4)+(8x-8)=180 equation:



(7/2x+4)+(8x-8)=180
We move all terms to the left:
(7/2x+4)+(8x-8)-(180)=0
Domain of the equation: 2x+4)!=0
x∈R
We get rid of parentheses
7/2x+8x+4-8-180=0
We multiply all the terms by the denominator
8x*2x+4*2x-8*2x-180*2x+7=0
Wy multiply elements
16x^2+8x-16x-360x+7=0
We add all the numbers together, and all the variables
16x^2-368x+7=0
a = 16; b = -368; c = +7;
Δ = b2-4ac
Δ = -3682-4·16·7
Δ = 134976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{134976}=\sqrt{64*2109}=\sqrt{64}*\sqrt{2109}=8\sqrt{2109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-368)-8\sqrt{2109}}{2*16}=\frac{368-8\sqrt{2109}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-368)+8\sqrt{2109}}{2*16}=\frac{368+8\sqrt{2109}}{32} $

See similar equations:

| 4x+2+30+80=180 | | `3x+5=-x+17` | | -2/4x+6=18 | | -6(x-17)=-42 | | 2.50x+2=3x | | 16+4n=-2 | | -(5-x)=4x-2-2x | | 3(2x−6)=4(−5x+1) | | j+11.9=14.1 | | 7x-9=11x+15 | | 1/3(24-9x)=-6x-12-2x | | 7(x-5)2+14=189 | | y/9+2=7 | | .7x-4=1.2x+3 | | 3.5x+12=24 | | -30-5x=129 | | -12k-3k+8k+12k-6k=14 | | 3(u−11)=15 | | –x+3=9. | | 2.5(n+4)=n+1.5-7 | | 150-x2-x=120+2x | | 11d-2d-3d-5d=19 | | -2(3x-4)+8x=8x+4+1 | | 1700-50x=2000-100x | | 2z+12=-12 | | w-5129=2,329 | | $16.35+x=$39.75 | | 72=24+12x | | 4g-9g-11g=-12 | | 7x=–7. | | 10v=3v+35 | | 5(3a-4)=33-8a |

Equations solver categories