(7/2x)+(5/6x)=7/4

Simple and best practice solution for (7/2x)+(5/6x)=7/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/2x)+(5/6x)=7/4 equation:



(7/2x)+(5/6x)=7/4
We move all terms to the left:
(7/2x)+(5/6x)-(7/4)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+7/2x)+(+5/6x)-(+7/4)=0
We get rid of parentheses
7/2x+5/6x-7/4=0
We calculate fractions
(-504x^2)/192x^2+672x/192x^2+160x/192x^2=0
We multiply all the terms by the denominator
(-504x^2)+672x+160x=0
We add all the numbers together, and all the variables
(-504x^2)+832x=0
We get rid of parentheses
-504x^2+832x=0
a = -504; b = 832; c = 0;
Δ = b2-4ac
Δ = 8322-4·(-504)·0
Δ = 692224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{692224}=832$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(832)-832}{2*-504}=\frac{-1664}{-1008} =1+41/63 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(832)+832}{2*-504}=\frac{0}{-1008} =0 $

See similar equations:

| -(x+21)=6x | | 12/8x=7/4 | | 8x-2/3(9x-15)=5x+55 | | 10x-18=x-81 | | 2(x+4)-2=4x-2(-1+x) | | -26-9s=-5(6s+2) | | n÷10-2.5=7.5 | | |y|-1=0 | | 3|2x-2|-5=7 | | A/5=c/4 | | -5(1-5x45(-8x-2)=-4x-8x | | -3z-4-8=34 | | -8=-9+r/10 | | 3x-3=¾(2x+12) | | 125m-100m+43200=45900-200m | | (3x)(2x)=1200 | | -7(4x-2)+7=-28x+21 | | 0.5x+0.8=0.8x-1.6 | | 1000(0.04-(x^2))=10 | | 6+11x=8x-18 | | 18x^2-15x-25=0 | | -32=2(3h+8) | | 5z+6-z=5+3z+2 | | 3.8g+7=1.8g+13 | | 2n+3=-29 | | y-0.45y=-176 | | h÷3-5=2 | | -6-5(1+4n)=28 | | 7-3x=1x-8-4x | | F(x)=-2x+2+4 | | 2x+20=3x+6 | | 30x-5=40x |

Equations solver categories