(7/2)w-5=-6w+3

Simple and best practice solution for (7/2)w-5=-6w+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7/2)w-5=-6w+3 equation:



(7/2)w-5=-6w+3
We move all terms to the left:
(7/2)w-5-(-6w+3)=0
Domain of the equation: 2)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+7/2)w-(-6w+3)-5=0
We multiply parentheses
7w^2-(-6w+3)-5=0
We get rid of parentheses
7w^2+6w-3-5=0
We add all the numbers together, and all the variables
7w^2+6w-8=0
a = 7; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·7·(-8)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{65}}{2*7}=\frac{-6-2\sqrt{65}}{14} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{65}}{2*7}=\frac{-6+2\sqrt{65}}{14} $

See similar equations:

| 9p^2-30p+23=0 | | 13x+15=17x | | 0.6+0.5y-1=y=0.5 | | (x^2+5x+1)^3=0 | | 30=4/2(2x+x) | | x2-6x+10=-3x+50 | | -8(x+5)=-8-5(x+8) | | -8k^+16k+64=0 | | -8k7+16k+64=0 | | C​=100​+0.75​y | | 3-2(b-2)=2-75 | | 17+4+2=1-5h | | 5/16y-2/8y=2+1/4y | | 12-3(-2)2+a=40 | | 3/8y-1/4y=2+1/4y | | -13v-7=6 | | -4.9x^2+361x+353=0 | | 2(2p+5)+2=0 | | -4.9x^2+229x+122=0 | | 5/16+3/8y=2+1/4y | | 0,76(-2x-3)=0,19x+6 | | 5x^2-23x-3=8 | | y=4/5/(-2) | | x^2-64x-80=0 | | 2=-8u+5(u+4) | | (8x-24)/4=66739592 | | 5x+28=135 | | 131-y=211 | | X=0,x=-2,x=4 | | 1.4+0.6x=0.8x-2.6 | | 5x(3x+7)=0 | | h/5=−7/12 |

Equations solver categories