(6x-17)(4x+9)+x+x=360

Simple and best practice solution for (6x-17)(4x+9)+x+x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-17)(4x+9)+x+x=360 equation:



(6x-17)(4x+9)+x+x=360
We move all terms to the left:
(6x-17)(4x+9)+x+x-(360)=0
We add all the numbers together, and all the variables
2x+(6x-17)(4x+9)-360=0
We multiply parentheses ..
(+24x^2+54x-68x-153)+2x-360=0
We get rid of parentheses
24x^2+54x-68x+2x-153-360=0
We add all the numbers together, and all the variables
24x^2-12x-513=0
a = 24; b = -12; c = -513;
Δ = b2-4ac
Δ = -122-4·24·(-513)
Δ = 49392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49392}=\sqrt{7056*7}=\sqrt{7056}*\sqrt{7}=84\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-84\sqrt{7}}{2*24}=\frac{12-84\sqrt{7}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+84\sqrt{7}}{2*24}=\frac{12+84\sqrt{7}}{48} $

See similar equations:

| 4(x-5)=4x+15-35 | | y/8=81 | | 9x-7=11x+17 | | 16-4n=24 | | 4k-11+9k=15 | | 3x+21=5x-51 | | 9/81=y | | .23x−15x=x−1 | | 2(5g-3)=34 | | 3x-168=-10x+53 | | 9x–2=2x+19* | | 3b−4=5b= | | 12(-8+8x)=-96 | | -4v-10=6 | | x+7=18/x | | 4(2x+7)+5x=-11 | | 3m+23=2 | | 4x=45-11x | | 8x2-36=0 | | x^{2}-4x-117=0 | | 6k+-10k=16 | | (4x−19)°+(3x)°=180° | | (4y=8) | | 21-4x=19-6x | | -4k-11+9k=15 | | x•12=96 | | 0.5m+12=29 | | F(x)=14x-7x^2-x8 | | 3q+2=5q | | 6÷3/4=6x4/3 | | 0.5x+2+x=-1.5x+26* | | 5t-4=6 |

Equations solver categories