(6x-1)(2-6x)=(3x-1)(2x+5)

Simple and best practice solution for (6x-1)(2-6x)=(3x-1)(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x-1)(2-6x)=(3x-1)(2x+5) equation:



(6x-1)(2-6x)=(3x-1)(2x+5)
We move all terms to the left:
(6x-1)(2-6x)-((3x-1)(2x+5))=0
We add all the numbers together, and all the variables
(6x-1)(-6x+2)-((3x-1)(2x+5))=0
We multiply parentheses ..
(-36x^2+12x+6x-2)-((3x-1)(2x+5))=0
We calculate terms in parentheses: -((3x-1)(2x+5)), so:
(3x-1)(2x+5)
We multiply parentheses ..
(+6x^2+15x-2x-5)
We get rid of parentheses
6x^2+15x-2x-5
We add all the numbers together, and all the variables
6x^2+13x-5
Back to the equation:
-(6x^2+13x-5)
We get rid of parentheses
-36x^2-6x^2+12x+6x-13x-2+5=0
We add all the numbers together, and all the variables
-42x^2+5x+3=0
a = -42; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·(-42)·3
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-23}{2*-42}=\frac{-28}{-84} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+23}{2*-42}=\frac{18}{-84} =-3/14 $

See similar equations:

| 10x+5=3(2x+2 | | 5(×-2)=2(x+1) | | (2x-5)(3x+5)=0 | | 2(2x+1)/3=10 | | 36x^-4=16 | | 10x-90=-14 | | 0x-18=-2x+2 | | 3m+7=6 | | 5x-18=-2x+2 | | 6x+20=2x+4.x= | | 18/(s+0.1)=2.5 | | 43.75+(41.5-u)=81.23 | | 4x-18=-2x+2 | | 4p+9=7 | | 12x^2+12x+72=0 | | 2x-18=-2x+2 | | x+97=100 | | (z+68.6)/5=16.72 | | 3z/10+1=3 | | x-7=x+9.x= | | 2x+10/3=8 | | (g/57)+3.2=3.98 | | X-18=-2x+2 | | (10-m)+3.2=8.2 | | 7x^2-77x+110=0 | | a/4+8=9 | | 3x+3/3=x-6/2 | | 4(y-5)=32 | | (X-5)/3+(3x+4)/2=15 | | -13.2=4.3+w/7 | | -13.2=4.3=w/7 | | 2x²-5x-3=0 |

Equations solver categories