If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6x + 8)(4x + -5) = 0 Reorder the terms: (8 + 6x)(4x + -5) = 0 Reorder the terms: (8 + 6x)(-5 + 4x) = 0 Multiply (8 + 6x) * (-5 + 4x) (8(-5 + 4x) + 6x * (-5 + 4x)) = 0 ((-5 * 8 + 4x * 8) + 6x * (-5 + 4x)) = 0 ((-40 + 32x) + 6x * (-5 + 4x)) = 0 (-40 + 32x + (-5 * 6x + 4x * 6x)) = 0 (-40 + 32x + (-30x + 24x2)) = 0 Combine like terms: 32x + -30x = 2x (-40 + 2x + 24x2) = 0 Solving -40 + 2x + 24x2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2'. 2(-20 + x + 12x2) = 0 Factor a trinomial. 2((-4 + -3x)(5 + -4x)) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-4 + -3x)' equal to zero and attempt to solve: Simplifying -4 + -3x = 0 Solving -4 + -3x = 0 Move all terms containing x to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -3x = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -3x = 0 + 4 -3x = 0 + 4 Combine like terms: 0 + 4 = 4 -3x = 4 Divide each side by '-3'. x = -1.333333333 Simplifying x = -1.333333333Subproblem 2
Set the factor '(5 + -4x)' equal to zero and attempt to solve: Simplifying 5 + -4x = 0 Solving 5 + -4x = 0 Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + -4x = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -4x = 0 + -5 -4x = 0 + -5 Combine like terms: 0 + -5 = -5 -4x = -5 Divide each side by '-4'. x = 1.25 Simplifying x = 1.25Solution
x = {-1.333333333, 1.25}
| g-3-7=2-7 | | x+3=y-1 | | Y^2-y-156=0 | | 2+x+4x=12 | | -1=-10+-s | | (6x+1)+(4x-6)+(45)=180 | | 12X-3=5X-28 | | ((a^-4)x(c^1/5))^3/4 | | (20+2x)(5+2x)=184 | | 37=b/3 | | (2x+4)+(2x-9)+(x)=180 | | 6=10(x-4) | | 16-2u=4 | | a^2+b^2=9 | | 9n=1/4= | | 2x+9+4x=9 | | m^2-13m+40= | | 6x-8x=-6 | | 17=21-x | | 1x+7y=-28-1x | | x-2x=-3-(-5)-4 | | 11=14-x | | 3x-20=5x-4 | | x+1.67x=15 | | -18-4v=-2(v+2) | | -1/8w=-13= | | 3-5logx=5 | | C=300-273 | | x+1.67x=10 | | x^2+14=-48 | | x+1.67x=3 | | 9x+5-40=-x+5 |