If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x+13)+(9x-15)+(11x-5)(4x+29)+61+67=720
We move all terms to the left:
(6x+13)+(9x-15)+(11x-5)(4x+29)+61+67-(720)=0
We add all the numbers together, and all the variables
(6x+13)+(9x-15)+(11x-5)(4x+29)-592=0
We get rid of parentheses
6x+9x+(11x-5)(4x+29)+13-15-592=0
We multiply parentheses ..
(+44x^2+319x-20x-145)+6x+9x+13-15-592=0
We add all the numbers together, and all the variables
(+44x^2+319x-20x-145)+15x-594=0
We get rid of parentheses
44x^2+319x-20x+15x-145-594=0
We add all the numbers together, and all the variables
44x^2+314x-739=0
a = 44; b = 314; c = -739;
Δ = b2-4ac
Δ = 3142-4·44·(-739)
Δ = 228660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228660}=\sqrt{4*57165}=\sqrt{4}*\sqrt{57165}=2\sqrt{57165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(314)-2\sqrt{57165}}{2*44}=\frac{-314-2\sqrt{57165}}{88} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(314)+2\sqrt{57165}}{2*44}=\frac{-314+2\sqrt{57165}}{88} $
| -3-39x=11x-13 | | 8=x*7+22 | | 4g−5g=11 | | –10y+2y=–32 | | -51=-y/5 | | 2k+(2k+1)=25 | | (4n+2)(4)= | | 10/18=x/144 | | 5q-(3q+2)=8 | | 1.06=(X+1)-x | | 5g−4g=11 | | 10h-4=74 | | -2m-5m=9m-12m | | 4x^2-7x=-9 | | a/11+8=13 | | 3(y+4)-2y=-4 | | r/6+12=17 | | -33x=-2x(x+1) | | 5r+16=8r+1 | | 24d+29d+19d=300 | | .3x+x=41000 | | 24=3(w+5) | | -14/3=-2w | | 9q+6=15 | | X+.25y=1.5 | | x+x+3=29 | | 2x−1 3=1 2 | | 16=-2(+n) | | -2-3x=-8 | | 9x-9+9=2x+8 | | 6y=48= | | x(3x+7)=330^2 |