(6p+3)(6p-7)-(7p-4)(-p-2)=0

Simple and best practice solution for (6p+3)(6p-7)-(7p-4)(-p-2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6p+3)(6p-7)-(7p-4)(-p-2)=0 equation:



(6p+3)(6p-7)-(7p-4)(-p-2)=0
We add all the numbers together, and all the variables
(6p+3)(6p-7)-(7p-4)(-1p-2)=0
We multiply parentheses ..
(+36p^2-42p+18p-21)-(7p-4)(-1p-2)=0
We get rid of parentheses
36p^2-42p+18p-(7p-4)(-1p-2)-21=0
We multiply parentheses ..
36p^2-(-7p^2-14p+4p+8)-42p+18p-21=0
We add all the numbers together, and all the variables
36p^2-(-7p^2-14p+4p+8)-24p-21=0
We get rid of parentheses
36p^2+7p^2+14p-4p-24p-8-21=0
We add all the numbers together, and all the variables
43p^2-14p-29=0
a = 43; b = -14; c = -29;
Δ = b2-4ac
Δ = -142-4·43·(-29)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-72}{2*43}=\frac{-58}{86} =-29/43 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+72}{2*43}=\frac{86}{86} =1 $

See similar equations:

| 3s-17=6s-74 | | x=4x-1=13 | | 3b=b+30 | | 10x+4=12x+4 | | 13-4x=1x-x | | 4s+61=3s+65 | | s+58=9s-94 | | 7v+58=v+70 | | 30+4x=9 | | b+51=3b+9 | | s-$10=$20.44 | | 7−9x=10 | | −2x2−6x−7=−7 | | 53+b=53 | | t÷5-8=11 | | -2x²=4x+14 | | 4x×-2x+3=54 | | 3(x-3)+57=-3 | | 7(3w+9)/5=3 | | x13=-12 | | 7.53x+60.24=120.48 | | 11a+31=3a+39 | | -6(2t+6)=-108 | | y+3=8.5 | | 5a=99 | | 4x=2x²-14 | | v+4=73 | | k-35=52 | | -10(s+4)=-15 | | 3x-2-4=5x-2 | | 10x²=8x²-4x+14 | | –h+4=–h+9 |

Equations solver categories