If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6k + -8)(5k + -5) = 0 Reorder the terms: (-8 + 6k)(5k + -5) = 0 Reorder the terms: (-8 + 6k)(-5 + 5k) = 0 Multiply (-8 + 6k) * (-5 + 5k) (-8(-5 + 5k) + 6k * (-5 + 5k)) = 0 ((-5 * -8 + 5k * -8) + 6k * (-5 + 5k)) = 0 ((40 + -40k) + 6k * (-5 + 5k)) = 0 (40 + -40k + (-5 * 6k + 5k * 6k)) = 0 (40 + -40k + (-30k + 30k2)) = 0 Combine like terms: -40k + -30k = -70k (40 + -70k + 30k2) = 0 Solving 40 + -70k + 30k2 = 0 Solving for variable 'k'. Factor out the Greatest Common Factor (GCF), '10'. 10(4 + -7k + 3k2) = 0 Factor a trinomial. 10((1 + -1k)(4 + -3k)) = 0 Ignore the factor 10.Subproblem 1
Set the factor '(1 + -1k)' equal to zero and attempt to solve: Simplifying 1 + -1k = 0 Solving 1 + -1k = 0 Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -1k = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -1k = 0 + -1 -1k = 0 + -1 Combine like terms: 0 + -1 = -1 -1k = -1 Divide each side by '-1'. k = 1 Simplifying k = 1Subproblem 2
Set the factor '(4 + -3k)' equal to zero and attempt to solve: Simplifying 4 + -3k = 0 Solving 4 + -3k = 0 Move all terms containing k to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -3k = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3k = 0 + -4 -3k = 0 + -4 Combine like terms: 0 + -4 = -4 -3k = -4 Divide each side by '-3'. k = 1.333333333 Simplifying k = 1.333333333Solution
k = {1, 1.333333333}
| 10y^2+39y+14=0 | | 8x-8=4x-3 | | 9y^2+81y=0 | | 3-6r+6=9 | | 2(m+2)=5m-2 | | 6x=15x+72 | | 4t-9+(2t+7)6= | | 7+9x=-25+x | | P-4=p-4 | | -5/9-1/3 | | 4.5=.6d-6.3 | | 8x=-18 | | 14-9i+4x=11-14i+9yi | | p(x)=256x^4-25 | | 14x+5=6x+8x | | 2x+-3=4x+1 | | 7-1.1x=0.4-2.2 | | x^3-1/125 | | X(x+22)=3 | | 0.1x+0.2=-3 | | 2/7-3/4 | | (8-2i)(8-2i)= | | 5y+7=2-y | | 8(x-6)+58=2(4x+5) | | 4(x-1)-2(x-3)=10 | | 2+4(x-13)=-3 | | x(x)=5 | | 7u/4=56 | | 2x-(5-7x)=-41 | | h=16t^2+104+56 | | 2(x-5)-(x+3)=-13 | | n*7=3 |