If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6X+20)2X=180
We move all terms to the left:
(6X+20)2X-(180)=0
We multiply parentheses
12X^2+40X-180=0
a = 12; b = 40; c = -180;
Δ = b2-4ac
Δ = 402-4·12·(-180)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-32\sqrt{10}}{2*12}=\frac{-40-32\sqrt{10}}{24} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+32\sqrt{10}}{2*12}=\frac{-40+32\sqrt{10}}{24} $
| 81=-3^(n-1) | | 5(5m-1)=-5+5m | | 7−4x=−3x+6 | | -12k=216 | | 11b=81-16b | | -3(-x-5)+2x=-6(-x-2) | | 3n+1=61 | | 6=p/4+13 | | 15=4.3n−2.1(n−4) | | 2(2)+y=30 | | 3x=15=8x15 | | 17=8+3m | | -7+5u=32 | | 3(x-9)+2x=4x+4 | | x=1+24/25 | | 7c-20=3c-5 | | -11b+7=50 | | 7x^2=2-2x | | 15m-4(2m-5=34 | | −1/3d=12 | | 8x2-100=-1900 | | 5(1+4n)=39+3n | | 22=4v-2 | | 4y-56=2y+34 | | -4(-6v+6)-5v=5(v-3)-2 | | 2y+10=y+5 | | 15-1/2m=-15 | | 6r+3r+1=19 | | 8x-39+2x=-3 | | 10x2-16050=-50 | | -8=6+w/2 | | 3x–10=-2x+15 |