(6/x)+(7/6x)=44

Simple and best practice solution for (6/x)+(7/6x)=44 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/x)+(7/6x)=44 equation:



(6/x)+(7/6x)=44
We move all terms to the left:
(6/x)+(7/6x)-(44)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+6/x)+(+7/6x)-44=0
We get rid of parentheses
6/x+7/6x-44=0
We calculate fractions
36x/6x^2+7x/6x^2-44=0
We multiply all the terms by the denominator
36x+7x-44*6x^2=0
We add all the numbers together, and all the variables
43x-44*6x^2=0
Wy multiply elements
-264x^2+43x=0
a = -264; b = 43; c = 0;
Δ = b2-4ac
Δ = 432-4·(-264)·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1849}=43$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-43}{2*-264}=\frac{-86}{-528} =43/264 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+43}{2*-264}=\frac{0}{-528} =0 $

See similar equations:

| X-2(2x-3)=4-x | | -7-30z+6=-15z-24-2 | | 4x^2-4(x+1)(x+1)=0 | | 4/7y+3=15 | | 6(1x-10)=120 | | 2a+2a+4a+6a=10 | | 11(a+5)+3a=4 | | 2a+2a+3a+5a=10 | | 4-2x/3-1/2x=-3 | | a-3a=6+10 | | 5(y+5y)=5 | | x/2+2x=180 | | x+1=4×-56 | | 39/5x=4+1/2x | | 9k=6 | | 6=11(m-6) | | 8x+27/7=28 | | e•3=7 | | C(x)=0.03x3−3x2+65x+400 | | d+173=241 | | 9(x+9)+12=12 | | -x+80=-36 | | (x-2)+x+(x+2)=51 | | (30-x)15+3x=0 | | -2=y/9+1 | | 7x-26=10x+13 | | 10x-118=5x-13 | | 3=a-12/7 | | 3(5x-2)=2(x-4) | | 1/4+d=1/3 | | n+7=2n-1 | | 39/5x=4+1/2 |

Equations solver categories