(6/x)+(4/(x+1))=9

Simple and best practice solution for (6/x)+(4/(x+1))=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/x)+(4/(x+1))=9 equation:


D( x )

x = 0

x+1 = 0

x = 0

x = 0

x+1 = 0

x+1 = 0

x+1 = 0 // - 1

x = -1

x in (-oo:-1) U (-1:0) U (0:+oo)

4/(x+1)+6/x = 9 // - 9

4/(x+1)+6/x-9 = 0

(4*x)/(x*(x+1))+(6*(x+1))/(x*(x+1))+(-9*x*(x+1))/(x*(x+1)) = 0

6*(x+1)-9*x*(x+1)+4*x = 0

10*x-9*x^2-9*x+6 = 0

x-9*x^2+6 = 0

x-9*x^2+6 = 0

x-9*x^2+6 = 0

DELTA = 1^2-(-9*4*6)

DELTA = 217

DELTA > 0

x = (217^(1/2)-1)/(-9*2) or x = (-217^(1/2)-1)/(-9*2)

x = (217^(1/2)-1)/(-18) or x = (217^(1/2)+1)/18

(x-((217^(1/2)-1)/(-18)))*(x-((217^(1/2)+1)/18)) = 0

((x-((217^(1/2)-1)/(-18)))*(x-((217^(1/2)+1)/18)))/(x*(x+1)) = 0

((x-((217^(1/2)-1)/(-18)))*(x-((217^(1/2)+1)/18)))/(x*(x+1)) = 0 // * x*(x+1)

(x-((217^(1/2)-1)/(-18)))*(x-((217^(1/2)+1)/18)) = 0

( x-((217^(1/2)+1)/18) )

x-((217^(1/2)+1)/18) = 0 // + (217^(1/2)+1)/18

x = (217^(1/2)+1)/18

( x-((217^(1/2)-1)/(-18)) )

x-((217^(1/2)-1)/(-18)) = 0 // + (217^(1/2)-1)/(-18)

x = (217^(1/2)-1)/(-18)

x in { (217^(1/2)+1)/18, (217^(1/2)-1)/(-18) }

See similar equations:

| 27/31/2 | | x=18+17y | | K/3-4=0 | | 9x+8x=119 | | 2y+8=3x | | -0.2(-2y-6)+2.6y= | | -4x^2-8x-12=0 | | 3v+14=-3v-10 | | 6/x+4/(x+1)=9 | | y/5=-26 | | 27/3.5 | | 3z^3+6z^2-z-2=0 | | (1-y)(3-y)(6-y)=-70 | | 1-(4x+3x)=-1-3(2-x) | | 8x^2-4x+5=0 | | x+1/x-2=0 | | 2(x-4)+7=3 | | 61-7x=11x+15 | | 4x+-6y=20 | | x-7.1=-6.9 | | (1-y)(3-y)(6-y)=120 | | 5g-35+2g-6(g-5)=0 | | 3(w-6)=3(w-1) | | -x+17y=-18 | | 2v-6v=-4 | | 1/8u+7/8=7/2u+5/4 | | 6x+6=124-7x | | -31=8-6p-7 | | 4y^3-64y= | | y+28=15 | | 2x^0y^-2/10x^-1y^-3 | | 6-22x-1=4x+8-6x-3 |

Equations solver categories