(6/7)x-(1/3)x=11

Simple and best practice solution for (6/7)x-(1/3)x=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/7)x-(1/3)x=11 equation:



(6/7)x-(1/3)x=11
We move all terms to the left:
(6/7)x-(1/3)x-(11)=0
Domain of the equation: 7)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+6/7)x-(+1/3)x-11=0
We multiply parentheses
6x^2-x^2-11=0
We add all the numbers together, and all the variables
5x^2-11=0
a = 5; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·5·(-11)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{55}}{2*5}=\frac{0-2\sqrt{55}}{10} =-\frac{2\sqrt{55}}{10} =-\frac{\sqrt{55}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{55}}{2*5}=\frac{0+2\sqrt{55}}{10} =\frac{2\sqrt{55}}{10} =\frac{\sqrt{55}}{5} $

See similar equations:

| 12x=8(16) | | 9.9/3=h | | v−10=−92)v−10=−3 | | n/6×=18 | | 58-(2c+3)=4(c=5)+c | | 150m-100m+38,400=40,000-150m | | t÷5-11=-9 | | -4(x-12)=-56 | | 7x-64=90 | | 90=62+7(x+1) | | 20+x=500 | | (3x+46)+14=90 | | x/6-x+2/9=2/3 | | 40+0.50x=45+0.40x | | x=1+0.25/5 | | 9n-7n-n=4 | | -28x=-4 | | 11=8x8 | | -16(-4x)=-28 | | n4+50=51 | | 12x-21=7x-79 | | 175m-75m+57,000=60,900-200m | | 25+5x=11-7x | | 13z+z-5z-6z=18 | | P-4-9=p | | (8r+3)-(7r+1)=-6 | | 4x-20=-7x+35 | | 5(p+3)=20 | | 8-9k=23-4k | | 136=3x+49 | | b+3b+2b+3b=18 | | 1/4(c-1)=16 |

Equations solver categories