(6/6x+1)+(1/x)=9

Simple and best practice solution for (6/6x+1)+(1/x)=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/6x+1)+(1/x)=9 equation:



(6/6x+1)+(1/x)=9
We move all terms to the left:
(6/6x+1)+(1/x)-(9)=0
Domain of the equation: 6x+1)!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(6/6x+1)+(+1/x)-9=0
We get rid of parentheses
6/6x+1/x+1-9=0
We calculate fractions
6x/6x^2+6x/6x^2+1-9=0
We add all the numbers together, and all the variables
6x/6x^2+6x/6x^2-8=0
We multiply all the terms by the denominator
6x+6x-8*6x^2=0
We add all the numbers together, and all the variables
12x-8*6x^2=0
Wy multiply elements
-48x^2+12x=0
a = -48; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-48)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-48}=\frac{-24}{-96} =1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| 2y=8192 | | 12-3x=-3x+8 | | 5x-3x=19 | | √2n=64 | | (5x+30)+5x=90 | | 3x+1,8=5,4, | | 6x=5+4x+7 | | (3x+2)=(2x-7) | | 6(x+5)=7(2-x) | | 3e÷2=9 | | 3m+10=7m+4 | | 180=x^2+6x-24 | | F(x)=3x^3+2x^2+4 | | h/2=1.5 | | 10p+-44=46 | | x+(x*0.18)=12900 | | 5x-50=90-5x | | 4x+3/5=-2 | | 8p+8=-6+(-3p) | | 1.25*x=650 | | x/1-x=1.3*10^5 | | 0.25*x=650 | | x+3x=53 | | -48=6(x-30) | | -48=6(x-30 | | p-3/4-1=2 | | 4m-3/7+2m+5/2=3 | | 6x-10=4x-6/ | | 4x-17=5x-9 | | 100=x-0.03x | | 6(3-5)=7(3x-2) | | 2x×x+10=60 |

Equations solver categories