(6/2)2-15x2/1=5

Simple and best practice solution for (6/2)2-15x2/1=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6/2)2-15x2/1=5 equation:



(6/2)2-15x^2/1=5
We move all terms to the left:
(6/2)2-15x^2/1-(5)=0
determiningTheFunctionDomain -15x^2/1-5+(6/2)2=0
We add all the numbers together, and all the variables
-15x^2/1-5+32=0
We add all the numbers together, and all the variables
-15x^2/1+27=0
We multiply all the terms by the denominator
-15x^2+27*1=0
We add all the numbers together, and all the variables
-15x^2+27=0
a = -15; b = 0; c = +27;
Δ = b2-4ac
Δ = 02-4·(-15)·27
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*-15}=\frac{0-18\sqrt{5}}{-30} =-\frac{18\sqrt{5}}{-30} =-\frac{3\sqrt{5}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*-15}=\frac{0+18\sqrt{5}}{-30} =\frac{18\sqrt{5}}{-30} =\frac{3\sqrt{5}}{-5} $

See similar equations:

| 9x+28=6x+115 | | 8x-8x=8x | | -2h-16=-3(h-2) | | (90-x)+(180-x)=120 | | 5+3x-2x^=0 | | 3(3x-2)=4x+14 | | -6-y/2=2 | | 12.5/x=5 | | (2x-1)^2-81=0 | | m^2-4m-18=0 | | 3=(x1)2x+9 | | 4(2x+6)+5(3x+3)+2=23x+42 | | E^(2x)-5=15 | | 6335633/x=0.19 | | 2+5x=4=21 | | 16.2*10^(4x)=1942 | | 5x•15=-9x•7 | | 7x+7=5x+16 | | h+10=99 | | 2=g10 | | 2.5*10^(x)=9.34 | | 2(0)-2y=-4 | | 4x-2(6)=28 | | 24(x-3)=16x+1 | | 93x-2=272x-2 | | n/24=24 | | 23x-6=8x-2 | | 3.1x=1 | | -9c=288 | | 4x-8=-2x•9 | | 2(-1)-2y=-4 | | 13y-24+2(4y+29)=129 |

Equations solver categories