If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( z )
z-1 = 0
z-5 = 0
z-1 = 0
z-1 = 0
z-1 = 0 // + 1
z = 1
z-5 = 0
z-5 = 0
z-5 = 0 // + 5
z = 5
z in (-oo:1) U (1:5) U (5:+oo)
(5*z)/(z-5)-(2/(z-1)) = 3 // - 3
(5*z)/(z-5)-(2/(z-1))-3 = 0
(5*z)/(z-5)-2*(z-1)^-1-3 = 0
(5*z)/(z-5)-2/(z-1)-3 = 0
(5*z*(z-1))/((z-5)*(z-1))+(-2*(z-5))/((z-5)*(z-1))+(-3*(z-5)*(z-1))/((z-5)*(z-1)) = 0
5*z*(z-1)-2*(z-5)-3*(z-5)*(z-1) = 0
5*z^2-3*z^2-7*z+18*z-15+10 = 0
2*z^2+11*z-5 = 0
2*z^2+11*z-5 = 0
2*z^2+11*z-5 = 0
DELTA = 11^2-(-5*2*4)
DELTA = 161
DELTA > 0
z = (161^(1/2)-11)/(2*2) or z = (-161^(1/2)-11)/(2*2)
z = (161^(1/2)-11)/4 or z = (-(161^(1/2)+11))/4
(z+(161^(1/2)+11)/4)*(z-((161^(1/2)-11)/4)) = 0
((z+(161^(1/2)+11)/4)*(z-((161^(1/2)-11)/4)))/((z-5)*(z-1)) = 0
((z+(161^(1/2)+11)/4)*(z-((161^(1/2)-11)/4)))/((z-5)*(z-1)) = 0 // * (z-5)*(z-1)
(z+(161^(1/2)+11)/4)*(z-((161^(1/2)-11)/4)) = 0
( z+(161^(1/2)+11)/4 )
z+(161^(1/2)+11)/4 = 0 // - (161^(1/2)+11)/4
z = -((161^(1/2)+11)/4)
( z-((161^(1/2)-11)/4) )
z-((161^(1/2)-11)/4) = 0 // + (161^(1/2)-11)/4
z = (161^(1/2)-11)/4
z in { -((161^(1/2)+11)/4), (161^(1/2)-11)/4 }
| 2x-4-4x-2/6=5/4 | | 15timesblank=75 | | -2x-2q+4y=0 | | 4[x+7]=9[x-1]+22 | | 47=-5x-33 | | 2x-48=32 | | -4.2x+4=1.2x | | 3x-0.5=0.5x | | px-6y=3 | | -4x+2-2x=14 | | 6x^2+2=152 | | -5(6x+4)=-80 | | 4x+(6x+y)=(x+5y) | | (x^7-4x^6)(x+3)(x-2)=0 | | -8-8y=6-2y | | 4x+(6x+y)+(x+5y)=180 | | 29+9=27 | | -2(x+3)=-3(x-8) | | 24x^5+36x^3-18x^2=0 | | 36x^2+25y^2=0 | | 5(-30x+20)=23(10-9x) | | 5-2(5x+2)=-5x-15 | | -14+6b+7-2b=1+1b | | 7x^2+2x^4-30=0 | | 7(2x+3)=-4x+10+18x | | 12+.25x=.5x-13 | | 3h-15=4h | | 25a^3+15a^2= | | -1.6=4.4-3y | | 3xy-15=0 | | 3u+15=39 | | (X+3)-2(3-5x)=5(x+5)-4 |