(5y+1)2-4(y-1)2=(y+5)(9y+5)

Simple and best practice solution for (5y+1)2-4(y-1)2=(y+5)(9y+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5y+1)2-4(y-1)2=(y+5)(9y+5) equation:



(5y+1)2-4(y-1)2=(y+5)(9y+5)
We move all terms to the left:
(5y+1)2-4(y-1)2-((y+5)(9y+5))=0
We multiply parentheses
10y-8y-((y+5)(9y+5))+2+8=0
We multiply parentheses ..
-((+9y^2+5y+45y+25))+10y-8y+2+8=0
We calculate terms in parentheses: -((+9y^2+5y+45y+25)), so:
(+9y^2+5y+45y+25)
We get rid of parentheses
9y^2+5y+45y+25
We add all the numbers together, and all the variables
9y^2+50y+25
Back to the equation:
-(9y^2+50y+25)
We add all the numbers together, and all the variables
2y-(9y^2+50y+25)+10=0
We get rid of parentheses
-9y^2+2y-50y-25+10=0
We add all the numbers together, and all the variables
-9y^2-48y-15=0
a = -9; b = -48; c = -15;
Δ = b2-4ac
Δ = -482-4·(-9)·(-15)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1764}=42$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-42}{2*-9}=\frac{6}{-18} =-1/3 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+42}{2*-9}=\frac{90}{-18} =-5 $

See similar equations:

| -2+x/x=-1 | | 2(x=4)+3(x+1)=5x-7+3x+3 | | 2+5x=54 | | (2(3-5x)+4)=5(2(3-3x)+2) | | 3k^2+22k–16=0 | | X=1/2(16-8y) | | 23=3/2x+8 | | 35-2x=180 | | Y=2b+5b=7 | | -10x–5=22X+4 | | 33*(x-12)=22*(x-11) | | 35+2x=90 | | (Y-3)=-(x+1) | | w-(-4-7)=12 | | 16-21=1t+9+4t | | 2y-8=-34-18 | | x-3*x-7=140 | | 8v-16=-64 | | 6x–8=10x–3 | | 6x-26=62 | | 5x–16=49 | | 21*(x-24)=42*(x-12) | | 10n-5-2n+3=5n+2 | | 5z-55=75 | | 175m-100m+52,525=55,275-200m | | Y=3x+5+-2 | | 37.24+0.50=c | | x+2/3=43 | | 37.24+0.50x=110 | | 21*(17x+1)=63 | | 12.53*r^2=14650000 | | 52x=6767 |

Equations solver categories