If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x-7)-(2x+3)/(6x+11)=8/3
We move all terms to the left:
(5x-7)-(2x+3)/(6x+11)-(8/3)=0
Domain of the equation: (6x+11)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
6x!=-11
x!=-11/6
x!=-1+5/6
x∈R
(5x-7)-(2x+3)/(6x+11)-(+8/3)=0
We get rid of parentheses
5x-(2x+3)/(6x+11)-7-8/3=0
We calculate fractions
5x+(-6x-9)/(18x+33)+(-48x-88)/(18x+33)-7=0
We multiply all the terms by the denominator
5x*(18x+33)+(-6x-9)+(-48x-88)-7*(18x+33)=0
We multiply parentheses
90x^2+165x+(-6x-9)+(-48x-88)-126x-231=0
We get rid of parentheses
90x^2+165x-6x-48x-126x-9-88-231=0
We add all the numbers together, and all the variables
90x^2-15x-328=0
a = 90; b = -15; c = -328;
Δ = b2-4ac
Δ = -152-4·90·(-328)
Δ = 118305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{118305}=\sqrt{9*13145}=\sqrt{9}*\sqrt{13145}=3\sqrt{13145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{13145}}{2*90}=\frac{15-3\sqrt{13145}}{180} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{13145}}{2*90}=\frac{15+3\sqrt{13145}}{180} $
| 3a-15=4 | | (y+4)+(2y-3)=180 | | 0.5x-0.2x=0.3x-1.5 | | -6/x-7=7 | | 13x+170=40 | | 2x-5=4+5+5 | | 13x+170=40* | | 3z+50=20 | | (5x-13)+2=14 | | 80-4y=60 | | 9a+80=170 | | 20a-30=60 | | 9x-69=12 | | 3m-20=70 | | 10y+70=150 | | -6=-8/c | | M4+32m+256=0 | | 5x+9/6x=1 | | (8x-3)4x=3 | | 15x²+20=0 | | 2x-57=61 | | 6m+61=89 | | y^2-21y-4=0 | | 4m+2=30,7 | | 7x=4/3(x+12) | | 9+7y=15/4 | | 8^(x+4)=13^(7x) | | 8^{x+4}=13^{7x} | | 5x=3=2(x+6) | | x2+400=625 | | t²-2t-100=0 | | 7x-6=5x- |