(5x-3)(9+x)=180

Simple and best practice solution for (5x-3)(9+x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-3)(9+x)=180 equation:



(5x-3)(9+x)=180
We move all terms to the left:
(5x-3)(9+x)-(180)=0
We add all the numbers together, and all the variables
(5x-3)(x+9)-180=0
We multiply parentheses ..
(+5x^2+45x-3x-27)-180=0
We get rid of parentheses
5x^2+45x-3x-27-180=0
We add all the numbers together, and all the variables
5x^2+42x-207=0
a = 5; b = 42; c = -207;
Δ = b2-4ac
Δ = 422-4·5·(-207)
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-12\sqrt{41}}{2*5}=\frac{-42-12\sqrt{41}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+12\sqrt{41}}{2*5}=\frac{-42+12\sqrt{41}}{10} $

See similar equations:

| -18+8x=2(3x-6) | | 4^4x-1=8^2x | | 202=18-u | | 3x(x-2)-4(2x+5)=24 | | 5x-8x-7=-3x+5-7 | | -0.4x+2.9=1.5 | | -13j=-20j-14 | | 1/3k+2/3(k-24)=1/6k-6 | | 16y+28=156 | | 19−11b=–17b−5 | | x+150=13x | | 2(x+4)−2=26−3x | | 3x-4-x=8+2x | | 3k-14=k+2 | | 2.5x-15=1x+3 | | 4(3x+4)=-8)=(2x+5) | | 10x-6x+180=10x+120 | | (3x+18)=(5x+68) | | 8t+-3t=35 | | 450+40x=975-65x | | 22+5x=83 | | |2x-5|+6=10 | | X+d=7 | | 8x-14+4x+1=180 | | k=2+5 | | 13=2+v | | -14+6n=2(1-2n)=8n | | 4-5/2x1/10=1 | | -3r-4r=1-6r | | 14+g=0 | | F(x)=x2-6 | | 5.5g+8=2.5g+17 |

Equations solver categories