(5x-3)(4x+1)+(5x-3)(5x-3)=0

Simple and best practice solution for (5x-3)(4x+1)+(5x-3)(5x-3)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-3)(4x+1)+(5x-3)(5x-3)=0 equation:



(5x-3)(4x+1)+(5x-3)(5x-3)=0
We multiply parentheses ..
(+20x^2+5x-12x-3)+(5x-3)(5x-3)=0
We get rid of parentheses
20x^2+5x-12x+(5x-3)(5x-3)-3=0
We multiply parentheses ..
20x^2+(+25x^2-15x-15x+9)+5x-12x-3=0
We add all the numbers together, and all the variables
20x^2+(+25x^2-15x-15x+9)-7x-3=0
We get rid of parentheses
20x^2+25x^2-15x-15x-7x+9-3=0
We add all the numbers together, and all the variables
45x^2-37x+6=0
a = 45; b = -37; c = +6;
Δ = b2-4ac
Δ = -372-4·45·6
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-17}{2*45}=\frac{20}{90} =2/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+17}{2*45}=\frac{54}{90} =3/5 $

See similar equations:

| 5/x+1+8/x+3=5 | | 12x+7=7-12x | | (5x-3)(4x+1)+(5x-3)^2=0 | | 0.5^x=0 | | x^+12x+4=0 | | 6(5w+1)+1=67 | | 3x^-13x+4=0 | | 4x+5√x-9=0 | | (x-2)^+x^=10 | | (X+3)^2=-4x | | 5(x-2)/6-x=1-x/9 | | 2(3-2u)=10 | | (4^x)-8*(2^x)+16=0 | | 3(x-2)^7-3=1 | | 5a+15=-5 | | 5a+15=-15 | | X4-4x3+3=0 | | x+5=23-x | | 8x3-4x-1=0 | | 8x3+4x+-1=0 | | 3m+17=7m+10 | | 5x2=12x | | -12(x+9)=4(x-39( | | 15y-132=6y-15 | | (64x)^3-(64x)^2+9=0 | | 16x^-16x+3=0 | | 10w-31=4w+29 | | B-3=33-b | | 7t=2,1 | | 26-5y=14 | | 9x+90=600 | | 2x-1=3/(4x-1) |

Equations solver categories