(5x-2)(x+1)=x(4-10x)

Simple and best practice solution for (5x-2)(x+1)=x(4-10x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-2)(x+1)=x(4-10x) equation:



(5x-2)(x+1)=x(4-10x)
We move all terms to the left:
(5x-2)(x+1)-(x(4-10x))=0
We add all the numbers together, and all the variables
(5x-2)(x+1)-(x(-10x+4))=0
We multiply parentheses ..
(+5x^2+5x-2x-2)-(x(-10x+4))=0
We calculate terms in parentheses: -(x(-10x+4)), so:
x(-10x+4)
We multiply parentheses
-10x^2+4x
Back to the equation:
-(-10x^2+4x)
We get rid of parentheses
5x^2+10x^2+5x-2x-4x-2=0
We add all the numbers together, and all the variables
15x^2-1x-2=0
a = 15; b = -1; c = -2;
Δ = b2-4ac
Δ = -12-4·15·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*15}=\frac{-10}{30} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*15}=\frac{12}{30} =2/5 $

See similar equations:

| F(x)=(10-x)(x-50) | | 15+3x=39 | |  14a+13a+8=22 | | 7x+3x=5x+55= | | 2+7=14-x | | a/3-1=7 | | 3(x-5)+7x=6-2x | | x2−+4x+3=0 | | x-3=9-x | | (2(3x-2))/3-(2x-3)/5=-4/3 | | 5x−3=5x+8 | | -7-10x-5x=2x+5 | | 6+2x=5{-x+5}-40 | | 5z-5z-4z+5z=-12 | | 10=8y-52 | | -18x+-14x+12x+16x=4 | | q+14=-15 | | 5+3x=7x-1 | | y/3-5=-5 | | 0.75s-0.25=s/8+2.25 | | (x+7)²=(x+7(( | | |3c+8|=29 | | x^2-7-4x-5=0 | | (n/3)=-20 | | n/4-8=-6 | | 6(v+5)=-2v+46 | | 15°+x=90° | | 3x-9+2=18+5x-9 | | 32x+12x+-16x=4 | | 4y=2y-1+61 | | 14=(-8)+x | | 126=f+32 |

Equations solver categories