(5x+5)(7x-7)=180

Simple and best practice solution for (5x+5)(7x-7)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+5)(7x-7)=180 equation:



(5x+5)(7x-7)=180
We move all terms to the left:
(5x+5)(7x-7)-(180)=0
We multiply parentheses ..
(+35x^2-35x+35x-35)-180=0
We get rid of parentheses
35x^2-35x+35x-35-180=0
We add all the numbers together, and all the variables
35x^2-215=0
a = 35; b = 0; c = -215;
Δ = b2-4ac
Δ = 02-4·35·(-215)
Δ = 30100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{30100}=\sqrt{100*301}=\sqrt{100}*\sqrt{301}=10\sqrt{301}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{301}}{2*35}=\frac{0-10\sqrt{301}}{70} =-\frac{10\sqrt{301}}{70} =-\frac{\sqrt{301}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{301}}{2*35}=\frac{0+10\sqrt{301}}{70} =\frac{10\sqrt{301}}{70} =\frac{\sqrt{301}}{7} $

See similar equations:

| 1056=6(x+160) | | 9(x−9)=81 | | 11x+5=9x+7 | | (5x+5)+(7x-7)=180 | | -1x/2=-5 | | 4+3f=-2 | | 6(w+8)=9w+27 | | 10m^2+7m=3 | | 3(8s-6)-9s=3(5s+3)-11 | | 130+2n=180 | | -5x+-68=2x+13 | | 12(x-3)=4(3x+5)+16 | | 14/x-1=7/4 | | 1/8x140000=N | | -22=2=6x | | 2z+15=35 | | 1/2+p=-4.12 | | 7x-18=3x | | 3^-3x+1=3^x-9 | | n/2+1*2/3=1/6 | | 52=(x+4)(x-5) | | 0.33y-4=-15 | | 0.4=(5/x)^2/(1+(5/x)^2) | | 0.4+0.4*(5/x)*(5/x)=(5/x)*(5/x) | | 7x+4x-8-3x-2x=30 | | x=+7 | | 9=3x+1.5 | | 0.4+0.4*(x/x)^2=(5/x)^2 | | 14+3(2x+1)=x–8 | | n/2+1|2/3=1/6 | | 1/3y-4=-15 | | 8x+16x=6(4x+10) |

Equations solver categories