(5x+10)+(2x-5)(x)=90

Simple and best practice solution for (5x+10)+(2x-5)(x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x+10)+(2x-5)(x)=90 equation:



(5x+10)+(2x-5)(x)=90
We move all terms to the left:
(5x+10)+(2x-5)(x)-(90)=0
We multiply parentheses
2x^2+(5x+10)-5x-90=0
We get rid of parentheses
2x^2+5x-5x+10-90=0
We add all the numbers together, and all the variables
2x^2-80=0
a = 2; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·2·(-80)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*2}=\frac{0-8\sqrt{10}}{4} =-\frac{8\sqrt{10}}{4} =-2\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*2}=\frac{0+8\sqrt{10}}{4} =\frac{8\sqrt{10}}{4} =2\sqrt{10} $

See similar equations:

| ?=3x3x3x3x3x3 | | 3x+x+5+-3=6x+-2x+-8+6 | | 8x7x7=15 | | 8x7x7=15 | | y4+12=48 | | 3p+4-100=-25-8p+6 | | -3+43=-2y+7y | | -3+43=-2y+7y | | -2m-4(3m+4)=-100 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | .603x^2-5.594x+5.12=0 | | 4x-10=(3x+4) | | 4x-10=(3x+4) | | -3x+3.5=9.5 | | h/2+15=19 | | h/2+15=19 | | 2(j+4)=20 | | 14x+17=3(x-2)^2-5 | | 2(j+4)=20 | | 4(d+1)=18 | | 4(d+1)=12 | | 4(d+1)=12 | | 4(d+1)=12 | | -6(m-83)=-72 | | -2+3b=-24 | | 2(d-9)=18 | | 785÷n=112 |

Equations solver categories