If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)(10x+15)=180
We move all terms to the left:
(5x)(10x+15)-(180)=0
We multiply parentheses
50x^2+75x-180=0
a = 50; b = 75; c = -180;
Δ = b2-4ac
Δ = 752-4·50·(-180)
Δ = 41625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41625}=\sqrt{225*185}=\sqrt{225}*\sqrt{185}=15\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-15\sqrt{185}}{2*50}=\frac{-75-15\sqrt{185}}{100} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+15\sqrt{185}}{2*50}=\frac{-75+15\sqrt{185}}{100} $
| 15x+5=6x+86 | | -2(g-55)=-80 | | 2a+3=10−3a | | 3d−17=46 | | 1=73-2x=2=86-3x | | 7u+10=73 | | 2=z/3=2 | | 4/5y=44/5 | | 10(m-96)=30 | | 9(z-89)=45 | | –x–1=–6 | | (36/x+37)+(1/x)=1 | | x+5=11. | | 0.75x-12=5 | | x-0.1=9.5 | | 3k3-10k2+9k-2=0 | | -7m+-4m=4-16 | | 3+4p=16 | | 9(b+5)=99 | | 32(p+15)=2752 | | –15h+13h−–h−–11h+–3h=–14 | | x-21/4=63/4 | | 5(2.5x-1.2)=15x-20 | | 5+2k=13 | | 25x-20=5x+7 | | k/6.1+91.3=15.6 | | (3x-5)(2x-9)=(2x+3)(3x+10) | | 8d+3d+2d-6=2d | | 30=-10-10x | | x/4+1/8=x-4/2-5/8 | | x+0.7=3.4 | | (X+7)(2x+8)=(x+17)(x) |