(57+x)(x+87)+50=180

Simple and best practice solution for (57+x)(x+87)+50=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (57+x)(x+87)+50=180 equation:



(57+x)(x+87)+50=180
We move all terms to the left:
(57+x)(x+87)+50-(180)=0
We add all the numbers together, and all the variables
(x+57)(x+87)+50-180=0
We add all the numbers together, and all the variables
(x+57)(x+87)-130=0
We multiply parentheses ..
(+x^2+87x+57x+4959)-130=0
We get rid of parentheses
x^2+87x+57x+4959-130=0
We add all the numbers together, and all the variables
x^2+144x+4829=0
a = 1; b = 144; c = +4829;
Δ = b2-4ac
Δ = 1442-4·1·4829
Δ = 1420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1420}=\sqrt{4*355}=\sqrt{4}*\sqrt{355}=2\sqrt{355}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-2\sqrt{355}}{2*1}=\frac{-144-2\sqrt{355}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+2\sqrt{355}}{2*1}=\frac{-144+2\sqrt{355}}{2} $

See similar equations:

| 10x+(x-26)+(x-22)=130 | | 2k-k3=-56 | | 4x+7=10x+2 | | x=45+40 | | x+68+72=180 | | 0.25x+2/5x=0.5-9/30 | | 112.75+38.2+x=180 | | 112.72+38.2+x=180 | | x-(x*0.01)=Y | | x/15=0.87 | | x/15=87 | | 4.7g+8=2.7g+16 | | 2=24/x | | 1x-1=21 | | 30b=10 | | z-55=135 | | 729=(3n)3/2 | | 16/x=0 | | -100+200=-4y | | -16x-32=64 | | 1.5x^2+x=160 | | 20x-100=60 | | 16x-35=13 | | 2x-55=135 | | 3y-100=50 | | -6x=-666 | | -2x=-666 | | 20-100=-4y | | 20-10=-2y | | 5w-9=99 | | (2x-4)^(2x-4)=256 | | 10/y=15y/6 |

Equations solver categories