(50-2x)(30-2x)-(50)(30)=600

Simple and best practice solution for (50-2x)(30-2x)-(50)(30)=600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (50-2x)(30-2x)-(50)(30)=600 equation:



(50-2x)(30-2x)-(50)(30)=600
We move all terms to the left:
(50-2x)(30-2x)-(50)(30)-(600)=0
We add all the numbers together, and all the variables
(-2x+50)(-2x+30)-5030-600=0
We add all the numbers together, and all the variables
(-2x+50)(-2x+30)-5630=0
We multiply parentheses ..
(+4x^2-60x-100x+1500)-5630=0
We get rid of parentheses
4x^2-60x-100x+1500-5630=0
We add all the numbers together, and all the variables
4x^2-160x-4130=0
a = 4; b = -160; c = -4130;
Δ = b2-4ac
Δ = -1602-4·4·(-4130)
Δ = 91680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{91680}=\sqrt{16*5730}=\sqrt{16}*\sqrt{5730}=4\sqrt{5730}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-4\sqrt{5730}}{2*4}=\frac{160-4\sqrt{5730}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+4\sqrt{5730}}{2*4}=\frac{160+4\sqrt{5730}}{8} $

See similar equations:

| 3a=(a+5)+12 | | 5a-(8-a)=40-10 | | 5.4p+13.1=-2.6p+3.5. | | (50-2x)(30-2x)-50x30=600 | | 3t−6=6 | | 1.29/15=y | | (50-2x)(30-2x)=600 | | 4/9=a/6 | | 2000+d=3d-1000 | | 86/100=31/x | | 17x+8=6x+2 | | 6x-3=48x+24 | | 16x-56=-120+30x+50 | | x*90+61*x-839700=0 | | 6x-3=48x+14 | | x*91+61*x-839700=0 | | 6x-24-220+10x=60 | | 5x-7=-26+2x | | w3+ 16=20 | | 8x-10=5x-70 | | 5k=30.26 | | 6=u4+ 3 | | x^2+20x=36 | | 13=2j+7 | | -8(6n-1)=200 | | 13b+1.8−9=37 | | 21x+21-14x+14=12x | | f(-3)=-13 | | 7w+8=166 | | 5w+3=86 | | 9m+3+2=81 | | 5(n+2)–15=4–(2n-5) |

Equations solver categories