(5/8)s-(7/8)=s+1

Simple and best practice solution for (5/8)s-(7/8)=s+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/8)s-(7/8)=s+1 equation:



(5/8)s-(7/8)=s+1
We move all terms to the left:
(5/8)s-(7/8)-(s+1)=0
Domain of the equation: 8)s!=0
s!=0/1
s!=0
s∈R
We add all the numbers together, and all the variables
(+5/8)s-(s+1)-(+7/8)=0
We multiply parentheses
5s^2-(s+1)-(+7/8)=0
We get rid of parentheses
5s^2-s-1-7/8=0
We multiply all the terms by the denominator
5s^2*8-s*8-7-1*8=0
We add all the numbers together, and all the variables
5s^2*8-s*8-15=0
Wy multiply elements
40s^2-8s-15=0
a = 40; b = -8; c = -15;
Δ = b2-4ac
Δ = -82-4·40·(-15)
Δ = 2464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2464}=\sqrt{16*154}=\sqrt{16}*\sqrt{154}=4\sqrt{154}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{154}}{2*40}=\frac{8-4\sqrt{154}}{80} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{154}}{2*40}=\frac{8+4\sqrt{154}}{80} $

See similar equations:

| 6x=7x+1 | | 5/8s-7/8=s+1 | | 2z=5z-21 | | 0.4^x=1 | | x*2.5x*6=1500 | | 27/y=3 | | (3x-2)/2=-7 | | x=0.0038x^2-0.41x+36.95 | | 6(x-1)=-73 | | 3(a+4)-7=15-2a | | a/2+3,5=4a/3-7 | | 8(x+5)=8x | | 6/2x-4=-1 | | 4x+5=6x-11=74 | | x-2/16=x/4 | | 10m^2-33m-54=0 | | (x/5)+14=3x | | 5(x^2)=0.55 | | 5x^2=0.55 | | -3(x-3)=64 | | 4(4x-7)-3x=13(x-5)+37 | | -2+1/4x=-26 | | 10-9x5+6x(-2=) | | -2+1/4x=-96 | | x^2+√11-2x=11x+√11-2x-30 | | 4x-1=3x+3= | | 3x^2/(4x)=6,81 | | -3.4r=68 | | x-(-9-5)=-3(x+18) | | 4x=3x+-54 | | 3x/100=6 | | 8x-6=-13+7x |

Equations solver categories