(5/6)k+2/3=4/3

Simple and best practice solution for (5/6)k+2/3=4/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/6)k+2/3=4/3 equation:



(5/6)k+2/3=4/3
We move all terms to the left:
(5/6)k+2/3-(4/3)=0
Domain of the equation: 6)k!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
(+5/6)k+2/3-(+4/3)=0
We multiply parentheses
5k^2+2/3-(+4/3)=0
We get rid of parentheses
5k^2+2/3-4/3=0
We multiply all the terms by the denominator
5k^2*3+2-4=0
We add all the numbers together, and all the variables
5k^2*3-2=0
Wy multiply elements
15k^2-2=0
a = 15; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·15·(-2)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*15}=\frac{0-2\sqrt{30}}{30} =-\frac{2\sqrt{30}}{30} =-\frac{\sqrt{30}}{15} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*15}=\frac{0+2\sqrt{30}}{30} =\frac{2\sqrt{30}}{30} =\frac{\sqrt{30}}{15} $

See similar equations:

| 4(x=1)=3x+4 | | 94=59(f-32) | | 2(c–1)+1=19 | | (2.5x-3)²=(2.2x-2)x3 | | 10/3n-5/2n=5/3n= | | 0=2t^2+17t+8 | | 7x−3x=24. | | (-10)/2-2=b | | 15−p÷3+5=−9 | | 5x+3=-17.X= | | k/3-1=-26 | | c/2=14.68 | | 2n-6=5-+16 | | -6(-6-6)=6x+6 | | p+28=51 | | 6j-15j-(14j)=-10 | | 2x+10=4x20 | | 8x+1+3x-10=5x+15 | | -11/2=-7/3+19/6kk= | | (x+50)+(x+100)=90 | | 1/2b+5=12 | | 2(10x-3)=20x-5 | | -2(y+4)+6(y+2)=84 | | 4(x=1)=3x=4 | | 3x/3=5.5/3 | | 19x+1.90=11.20x+2.50 | | 2(10x-3)=20x-4-2 | | -4+3v=5 | | 16−c=−11 | | 5x+3=-17x= | | 7.00+1.50y=29.50 | | 11x-9=5x+15 |

Equations solver categories