(5/3x-6)-(4/2-x)=0

Simple and best practice solution for (5/3x-6)-(4/2-x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/3x-6)-(4/2-x)=0 equation:



(5/3x-6)-(4/2-x)=0
Domain of the equation: 3x-6)!=0
x∈R
Domain of the equation: 2-x)!=0
We move all terms containing x to the left, all other terms to the right
-x)!=-2
x!=-2/1
x!=-2
x∈R
We add all the numbers together, and all the variables
(5/3x-6)-(-1x+2)=0
We get rid of parentheses
5/3x+1x-6-2=0
We multiply all the terms by the denominator
1x*3x-6*3x-2*3x+5=0
Wy multiply elements
3x^2-18x-6x+5=0
We add all the numbers together, and all the variables
3x^2-24x+5=0
a = 3; b = -24; c = +5;
Δ = b2-4ac
Δ = -242-4·3·5
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{129}}{2*3}=\frac{24-2\sqrt{129}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{129}}{2*3}=\frac{24+2\sqrt{129}}{6} $

See similar equations:

| 1+12x=-71 | | 8.2=-14.2+7u | | 6h.h=24 | | 20b−17b=12 | | 3/4=7.5/2c | | X+8=6x-2 | | 19|14x+8|7=9|7 | | 4x^2(x-1)^(1/3)+6x(x-1)^(4/3)=0 | | 49.20=v+35.2 | | 2x+90+x+95=360 | | (2z-1)(z+2)=1+2z | | 2x=90+x+95+360 | | 3x+16=5x-8 | | 5a+8=a+2a-2 | | 5t+4=7t+3 | | 2v+12=5v-3 | | Q(0)=1/x^2-9 | | -1/4x+2=4x-15 | | 5(m+1)+5=-m+13-2+6m | | x^2-7/3x-2=0 | | (x-6)(x+6)-8=1-4x | | 217=-7(1-4x) | | 3x+5x-(2x-6)=13 | | X=5;3x9 | | 6+3x=5x-8 | | 5x+4=3-16 | | 4^p2-8p+16=100 | | 2(x-15)=7(x-6) | | (2x+10)+(2x-10)=180 | | 4x+(-4)+2x+(-7)=12 | | 7x-3=18= | | 4x-4+2x-7=12 |

Equations solver categories