(5/3x)+x=64

Simple and best practice solution for (5/3x)+x=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/3x)+x=64 equation:



(5/3x)+x=64
We move all terms to the left:
(5/3x)+x-(64)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/3x)+x-64=0
We add all the numbers together, and all the variables
x+(+5/3x)-64=0
We get rid of parentheses
x+5/3x-64=0
We multiply all the terms by the denominator
x*3x-64*3x+5=0
Wy multiply elements
3x^2-192x+5=0
a = 3; b = -192; c = +5;
Δ = b2-4ac
Δ = -1922-4·3·5
Δ = 36804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36804}=\sqrt{4*9201}=\sqrt{4}*\sqrt{9201}=2\sqrt{9201}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-2\sqrt{9201}}{2*3}=\frac{192-2\sqrt{9201}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+2\sqrt{9201}}{2*3}=\frac{192+2\sqrt{9201}}{6} $

See similar equations:

| 7=4/5d | | 8(c-16)=-120 | | 3(3x-4)={1}{4}(32x+56) | | 2n-4(n-2)=n-7 | | 2(19)x=2/81 | | 2(19)x=281 | | 0.25(x-8)+0.5x=0.666x+3 | | 3700+31x=4228+42x | | 2y+19+115=180 | | z/3+5=-80 | | 4(x)-3=17 | | z/3+5=80 | | 31/4​ =1/2​ +w | | 50+0.50x=0.70x | | 58,665+9.50x=17,967+20x | | 2x-13+2x-4=90 | | 2.15d+3.11=11.72 | | 2x-13+2x-4=180 | | (a/2)-1.5=0.75 | | 8​(3x−​2)=80 | | 8/x-5=x-9/21 | | 1b+1=2b-1 | | 2(4+b)=-12 | | 1x+2=-1x-2 | | 3(3x-4)=1/4(35x+56) | | 20/x=30/600 | | x-15.8=70.2 | | A+8=b+b | | 2(4+b)=–12 | | 80=8(8+p) | | 12x+18=4x-14 | | x-94.4=57.3 |

Equations solver categories