(5/2x)+(x-4/2)=11

Simple and best practice solution for (5/2x)+(x-4/2)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2x)+(x-4/2)=11 equation:



(5/2x)+(x-4/2)=11
We move all terms to the left:
(5/2x)+(x-4/2)-(11)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/2x)+(x-2)-11=0
We get rid of parentheses
5/2x+x-2-11=0
We multiply all the terms by the denominator
x*2x-2*2x-11*2x+5=0
Wy multiply elements
2x^2-4x-22x+5=0
We add all the numbers together, and all the variables
2x^2-26x+5=0
a = 2; b = -26; c = +5;
Δ = b2-4ac
Δ = -262-4·2·5
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{159}}{2*2}=\frac{26-2\sqrt{159}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{159}}{2*2}=\frac{26+2\sqrt{159}}{4} $

See similar equations:

| 5=7w-2 | | A^n=20n+12 | | 60=4d-8 | | -54=q+-38 | | 3x+8-5x=32 | | 1=u-9 | | 1.04^x=1.5 | | 2/5y=1/2 | | -3x-15=2x+36 | | 3(x-1.6)=-12.8 | | 28+w=17 | | 7+3x+x=23 | | (4^-3)x(6^3)=x | | x+(x+9)=45 | | .33(2x+6)=-3(x+4)-x | | 2(x+8)=130 | | 2(3c+5)=46 | | 0.75(16-s)+0.5s=9 | | x+(x+70)=330 | | 6p=23 | | 5-t=7t+12 | | a+69+51=180 | | 4x^2+8x+4=4x^2+10x-6 | | (x-5)+(x-6)+(2x-2)+x+(2x-2)=540 | | 6(3x+2)=68 | | 2y+5-157=180 | | -0.4=x-4.9+0.5 | | 2x^2x-5=8 | | 9x^2+29x-84=0 | | x^2+4x=2x^2-x-6 | | 0.25(4x+12)=3-(4x-20) | | 6=j+6 |

Equations solver categories